Skip to main content

Advertisement

Log in

Potential Therapeutic Effects of Melatonin Mediate via miRNAs in Cancer

  • Review
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

miRNAs are evolutionarily conserved non-coding ribonucleic acids with a length of between 19 and 25 nucleotides. Because of their ability to regulate gene expression, miRNAs have an important function in the controlling of various biological processes, such as cell cycle, differentiation, proliferation, and apoptosis. Owing to the long-standing regulative potential of miRNAs in tumor-suppressive pathways, scholars have recently paid closer attention to the expression profile of miRNAs in various types of cancer. Melatonin, an indolic compound secreted from pineal gland and some peripheral tissues, has been considered as an effective anti-tumor hormone in a wide spectrum of cancers. Furthermore, it induces apoptosis, inhibits tumor metastasis and invasion, and also angiogenesis. A growing body of evidence indicates the effects of melatonin on miRNAs expression in broad spectrum of diseases, including cancer. Due to the long-term effects of the regulation of miRNAs expression, melatonin could be a promising therapeutic factor in the treatment of cancers via the regulation of miRNAs. Therefore, in this review, we will discuss the effects of melatonin on miRNAs expression in various types of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahão MV et al (2019) Identification of insulin-regulated aminopeptidase (IRAP) in the rat pineal gland and the modulation of melatonin synthesis by angiotensin IV. Brain Res 1704:40–46

    PubMed  Google Scholar 

  • Akbarzadeh M et al (2017) The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep 7(1):1–11

    CAS  Google Scholar 

  • Akbarzadeh M et al (2019) Current approaches in identification and isolation of cancer stem cells. J Cell Physiol 234(9):14759–14772

    CAS  Google Scholar 

  • Al-Kafaji G, Al-Naieb ZT, Bakhiet M (2016) Increased oncogenic miRNA-18a expression in the peripheral blood of patients with prostate cancer: A potential novel non-invasive biomarker. Oncol Lett 11(2):1201–1206

    CAS  PubMed  Google Scholar 

  • Amir S et al (2013) Oncomir miR-125b suppresses p14 ARF to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS ONE 8(4):e61064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafizadeh M et al (2019) miRNAs mediate the anti-tumor and protective effects of ginsenosides. Nutr Cancer. https://doi.org/10.1080/01635581.2019.1675722

    Article  PubMed  Google Scholar 

  • Ataee R et al (2017) The role of melatonin and melatonin receptors in pharmacology and pharmacotherapy of cancer. Austin Oncol 2(1):1015

    Google Scholar 

  • Balogh J et al (2016) Hepatocellular carcinoma: a review. Journal of Hepatocellular Carcinoma 3:41

    PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay D, Chattopadhyay A (2006) Reactive oxygen species-induced gastric ulceration: protection by melatonin. Curr Med Chem 13(10):1187–1202

    CAS  PubMed  Google Scholar 

  • Bavelloni A et al (2017) MiRNA-210: a current overview. Anticancer Res 37(12):6511–6521

    CAS  PubMed  Google Scholar 

  • Black JD, Rezvani K (2016) Heat shock protein 70s as potential molecular targets for colon cancer therapeutics. Curr Med Chem 23(28):3171–3188

    CAS  PubMed  Google Scholar 

  • Breunig C et al (2017) miRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 8(8):e2973–e2973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J et al (2013) miRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest. https://doi.org/10.1172/JCI65871

    Article  PubMed  PubMed Central  Google Scholar 

  • Camps C et al (2014) Integrated analysis of miRNA and mRNA expression and association with HIF binding reveals the complexity of miRNA expression regulation under hypoxia. Mol Cancer 13(1):28

    PubMed  PubMed Central  Google Scholar 

  • Carloni S et al (2016) Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and mi R-34a/silent information regulator 1 pathway. J Pineal Res 61(3):370–380

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) miRNA-21 is an antiapoptotic factor in human glioblastoma cells. Can Res 65(14):6029–6033

    CAS  Google Scholar 

  • Chen Y et al (2008) miRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272(2):197–205

    CAS  PubMed  Google Scholar 

  • Chen B et al (2014) miRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer 14(1):1–10

    Google Scholar 

  • Cho SY et al (2011) Sphingosine kinase 1 pathway is involved in melatonin-induced HIF-1α inactivation in hypoxic PC-3 prostate cancer cells. J Pineal Res 51(1):87–93

    CAS  PubMed  Google Scholar 

  • Ciafre S et al (2005) Extensive modulation of a set of miRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    CAS  PubMed  Google Scholar 

  • Clokie SJ et al (2012) miRNAs in the Pineal Gland miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J Biol Chem 287(30):25312–25324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conti A et al (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J Neurooncol 93(3):325–332

    CAS  PubMed  Google Scholar 

  • D’Alessio A et al (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 11(4):469

    PubMed Central  Google Scholar 

  • Dai W et al (2014) Anti-miR-197 inhibits migration in HCC cells by targeting KAI 1/CD82. Biochem Biophys Res Commun 446(2):541–548

    CAS  PubMed  Google Scholar 

  • de Mesquita LSM et al (2017) The muscarinic effect of anhydroecgonine methyl ester, a crack cocaine pyrolysis product, impairs melatonin synthesis in the rat pineal gland. Toxicol Res 6(4):420–431

    Google Scholar 

  • de Oliveira JG et al (2019) Melatonin down-regulates miRNA-10a and decreases invasion and migration of triple-negative breast cancer cells. Melatonin Res 2(2):86–99

    Google Scholar 

  • Diederichs S et al (2016) The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 8(5):442–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinami R et al (2014) miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Can Res 74(15):4145–4156

    CAS  Google Scholar 

  • Du L et al (2017) Oral squamous cell carcinoma cells are resistant to doxorubicin through upregulation of miR-221. Mol Med Rep 16(3):2659–2667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan T et al (2018) Inhibiting MT 2-TFE 3-dependent autophagy enhances melatonin-induced apoptosis in tongue squamous cell carcinoma. J Pineal Res 64(2):e12457

    Google Scholar 

  • Fathi Maroufi N et al (2020b) Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05515-2

    Article  PubMed  Google Scholar 

  • Feng X et al (2016) Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int J Oncol 49(6):2600–2610

    CAS  PubMed  Google Scholar 

  • Ferreira LC et al (2020) The role of melatonin on miRNAs modulation in triple-negative breast cancer cells. PLoS ONE 15(2):e0228062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferro A et al (2014) Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur J Cancer 50(7):1330–1344

    PubMed  Google Scholar 

  • Foley HM, Steel AE (2019) Adverse events associated with oral administration of melatonin: a critical systematic review of clinical evidence. Complement Ther Med 42:65–81

    PubMed  Google Scholar 

  • Fong MY et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17(2):183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2017) Micro RNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI 3K/Akt pathway. Cancer Sci 108(4):620–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriely G et al (2011) Human glioma growth is controlled by miRNA-10b. Can Res 71(10):3563–3572

    CAS  Google Scholar 

  • Gao Y et al (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI 3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res 62(2):e12380

    Google Scholar 

  • Grant SG et al (2009) Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev Mol Med. https://doi.org/10.1017/S1462399409000982

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu J et al (2017) Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed Pharmacother 93:969–975

    CAS  PubMed  Google Scholar 

  • Guessous F et al (2010) miRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9(6):1031–1036

    CAS  PubMed  Google Scholar 

  • Guraya S (2018) Prognostic significance of circulating miRNA-21 expression in esophageal, pancreatic and colorectal cancers; a systematic review and meta-analysis. Int J Surg 60:41–47

    PubMed  Google Scholar 

  • Hardeland R (2018) Interactions of melatonin and miRNAs. Biochem Mol Biol J. https://doi.org/10.21767/2471-8084.100056

    Article  Google Scholar 

  • He X-J et al (2014) Up-regulated miR-199a-5p in gastric cancer functions as an oncogene and targets klotho. BMC Cancer 14(1):1–11

    Google Scholar 

  • Hill SM et al (2009) Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther 8(4):337–346

    CAS  PubMed  Google Scholar 

  • Hong H et al (2016) miRNA-200b impacts breast cancer cell migration and invasion by regulating Ezrin-Radixin-Moesin. Med Sci Monit 22:1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh M-J et al (2020) Effects of miR-34b/miR-892a upregulation and inhibition of ABCB1/ABCB4 on melatonin-induced apoptosis in VCR-resistant oral cancer cells. Mol Ther Nucleic Acids 19:877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua K et al (2016) miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int J Oncol 48(5):1997–2006

    CAS  PubMed  Google Scholar 

  • Huang W, Lin J, Zhang H (2016) miR-126: A novel regulator in colon cancer. Biomed Rep 4(2):131–134

    CAS  PubMed  Google Scholar 

  • Hunsaker M et al (2019) Differential miRNA expression of miR-21 and miR-155 within oral cancer extracellular vesicles in response to melatonin. Dentist J 7(2):48

    Google Scholar 

  • Huo W et al (2017) miR-203a-3p. 1 targets IL-24 to modulate hepatocellular carcinoma cell growth and metastasis. FEBS Open Bio 7(8):1085–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huse JT et al (2009) The PTEN-regulating miRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23(11):1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai N et al (2018) Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 53(1):237–245

    CAS  PubMed  Google Scholar 

  • Jalava S et al (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31(41):4460–4471

    CAS  PubMed  Google Scholar 

  • Jardin I et al (2021) Melatonin downregulates TRPC6, impairing store-operated calcium entry in triple-negative breast cancer cells. J Biol Chem 296:100254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji G et al (2021) Melatonin inhibits proliferation and viability and promotes apoptosis in colorectal cancer cells via upregulation of the miRNA-34a/449a cluster. Mol Med Rep 23(3):1–1

    Google Scholar 

  • Jiang F et al (2014) MiR-222 targeted PUMA to improve sensitization of UM1 cells to cisplatin. Int J Mol Sci 15(12):22128–22141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin F et al (2008) Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance–associated protein genes. Neuroscience 154(2):541–550

    CAS  PubMed  Google Scholar 

  • Jin T et al (2017) miRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget 8(20):32769

    PubMed  PubMed Central  Google Scholar 

  • Jodati A et al (2019) Different expression of Micro RNA-126, 133a and 145 in aorta and saphenous vein samples of patients undergoing coronary artery bypass graft surgery. J Cardiovasc Thoracic Res 11(1):43

    Google Scholar 

  • Jung JH et al (2019) NEDD9 inhibition by miR-25-5p activation is critically involved in co-treatment of melatonin-and pterostilbene-induced apoptosis in colorectal cancer cells. Cancers 11(11):1684

    CAS  PubMed Central  Google Scholar 

  • Kartini D et al (2020) Effect of melatonin supplementation in combination with neoadjuvant chemotherapy to miR-210 and CD44 expression and clinical response improvement in locally advanced oral squamous cell carcinoma: a randomized controlled trial. J Egypt Natl Canc Inst 32(1):1–7

    Google Scholar 

  • Kast RE (2015) Agomelatine or ramelteon as treatment adjuncts in glioblastoma and other M1-or M2-expressing cancers. Contemp Oncol 19(2):157

    Google Scholar 

  • Kim H et al (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci 107(5):2183–2188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-K et al (2013) Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J 27(7):2742–2755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig AB et al (2018) A comprehensive analysis of argonaute-CLIP data identifies novel, conserved and species-specific targets of miR-21 in human liver and hepatocellular carcinoma. Int J Mol Sci 19(3):851

    PubMed Central  Google Scholar 

  • Landskroner-Eiger S, Moneke I, Sessa WC (2013) miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med 3(2):a006643

    PubMed  PubMed Central  Google Scholar 

  • Lee SE et al (2011) miRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 51(3):345–352

    CAS  PubMed  Google Scholar 

  • Lee H et al (2018) Melatonin disturbs SUMO ylation-mediated crosstalk between c-Myc and nestin via MT 1 activation and promotes the sensitivity of paclitaxel in brain cancer stem cells. J Pineal Res 65(2):e12496

    PubMed  Google Scholar 

  • Leicht DT et al (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta Mol Cell Res 1773(8):1196–1212

    CAS  Google Scholar 

  • Li P et al (2016) Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and miRNA synthesis. Exp Cell Res 340(2):305–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP et al (2017) Effects of miRNA-26b on proliferation and invasion of glioma cells and related mechanisms. Mol Med Rep 16(4):4165–4170

    CAS  PubMed  Google Scholar 

  • Li KP et al (2018) Upregulation of miR-598 promotes cell proliferation and cell cycle progression in human colorectal carcinoma by suppressing INPP5E expression. Mol Med Rep 17(2):2991–2997

    CAS  PubMed  Google Scholar 

  • Li H, Wang H, Ren Z (2018) miRNA-214-5p inhibits the invasion and migration of hepatocellular carcinoma cells by targeting Wiskott-Aldrich syndrome like. Cell Physiol Biochem 46(2):757–764

    CAS  PubMed  Google Scholar 

  • Liao D et al (2018) miR-221 inhibits autophagy and targets TP53INP1 in colorectal cancer cells. Exp Ther Med 15(2):1712–1717

    CAS  PubMed  Google Scholar 

  • Ling N et al (2013) miRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol Rep 30(5):2111–2118

    CAS  PubMed  Google Scholar 

  • Liu X et al (2015) miRNA-940 promotes tumor cell invasion and metastasis by downregulating ZNF24 in gastric cancer. Oncotarget 6(28):25418

    PubMed  PubMed Central  Google Scholar 

  • Lu D et al (2018) miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4. Mol Med Rep 17(1):618–623

    CAS  PubMed  Google Scholar 

  • Maroufi NF et al (2019) Influence of single nucleotide polymorphism in IL-27 and IL-33 genes on breast cancer. Br J Biomed Sci 76(2):89–91

    Google Scholar 

  • Maroufi NF et al (2020a) Targeting cancer stem cells by melatonin: effective therapy for cancer treatment. Pathol Res Pract 216:152919

    CAS  PubMed  Google Scholar 

  • Maroufi FN et al (2020a) A glimpse into molecular mechanisms of embryonic stem cells pluripotency: current status and future perspective. J Cell Physiol 235:6377

    Google Scholar 

  • Maroufi NF et al (2020a) Therapeutic potentials of Apatinib in cancer treatment: Possible mechanisms and clinical relevance. Life Sci 241:117106

    Google Scholar 

  • Maroufi NF et al (2020b) Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. Eur J Pharmacol 881:173282

    CAS  PubMed  Google Scholar 

  • Maroufi NF et al (2020b) The potential therapeutic effects of melatonin on breast cancer: an invasion and metastasis inhibitor. Pathol Res Pract 216:153226

    CAS  PubMed  Google Scholar 

  • Maroufi NF et al (2020c) Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn Schmiedebergs Arch Pharmacol 393(1):1–11

    CAS  PubMed  Google Scholar 

  • Maroufi NF et al (2020d) The apatinib inhibits breast cancer cell line MDA-MB-231 in vitro by inducing apoptosis, cell cycle arrest, and regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Breast Cancer 27:1–8

    Google Scholar 

  • Marques JH et al (2018) Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: in vivo and in vitro studies. Life Sci 208:131–138

    CAS  PubMed  Google Scholar 

  • Martín V et al (2006) Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Can Res 66(2):1081–1088

    Google Scholar 

  • Martín V et al (2014) Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res 57(3):308–316

    PubMed  Google Scholar 

  • McAnena P et al (2019) Circulating miRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer 19(1):436

    PubMed  PubMed Central  Google Scholar 

  • Mercatelli N et al (2008) The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 3(12):e4029

    PubMed  PubMed Central  Google Scholar 

  • Minaei SE et al (2019) In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Mater Sci Eng C 101:575–587

    CAS  Google Scholar 

  • Mori F et al (2016) Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget 7(15):20532

    PubMed  PubMed Central  Google Scholar 

  • Nagpal N et al (2015) HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Sci Rep 5(1):1–14

    Google Scholar 

  • Nip H et al (2016) Oncogenic miRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget 7(42):68371

    PubMed  PubMed Central  Google Scholar 

  • Peliciari-Garcia RA et al (2013) Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland. BioMed Res Int 2013:8

    Google Scholar 

  • Peuhkuri K, Sihvola N, Korpela R (2012) Dietary factors and fluctuating levels of melatonin. Food Nutr Res 56(1):17252

    Google Scholar 

  • Pierozan P et al (2018) The environmental neurotoxin β-N-methylamino-l-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res 65(1):e12488

    PubMed  Google Scholar 

  • Pourhanifeh MH et al (2019) Potential use of melatonin in skin cancer treatment: a review of current biological evidence. J Cell Physiol 234(8):12142–12148

    CAS  PubMed  Google Scholar 

  • Qin J et al (2014) Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene 538(2):342–347

    CAS  PubMed  Google Scholar 

  • Qin Y et al (2017) mir-106a regulates cell proliferation and apoptosis of colon cancer cells through targeting the PTEN/PI3K/AKT signaling pathway. Oncol Lett 15:3197–3201

    PubMed  PubMed Central  Google Scholar 

  • Qiu J et al (2019) miRNA-7 inhibits melatonin synthesis by acting as a linking molecule between leptin and norepinephrine signaling pathways in pig pineal gland. J Pineal Res 66(3):e12552

    PubMed  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    CAS  PubMed  Google Scholar 

  • Roscigno G et al (2017) MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget 8(12):19507

    PubMed  PubMed Central  Google Scholar 

  • Saadatpour L et al (2016) Glioblastoma: exosome and miRNA as novel diagnosis biomarkers. Cancer Gene Ther 23(12):415–418

    CAS  PubMed  Google Scholar 

  • Sasayama T et al (2009) miRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125(6):1407–1413

    CAS  PubMed  Google Scholar 

  • Shafabakhsh R et al (2019) Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol 234(12):21670–21682

    CAS  PubMed  Google Scholar 

  • Sharma S et al (2017) P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA 23(8):1237–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen F et al (2015) MiR-492 contributes to cell proliferation and cell cycle of human breast cancer cells by suppressing SOX7 expression. Tumor Biol 36(3):1913–1921

    CAS  Google Scholar 

  • Si W et al (2019) The role and mechanisms of action of miRNAs in cancer drug resistance. Clin Epigenet 11(1):25

    Google Scholar 

  • Siegel RL et al (2019) Global patterns and trends in colorectal cancer incidence in young adults. Gut 68(12):2179–2185

    PubMed  Google Scholar 

  • Siegel RL et al (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  • Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slaby O et al (2010) miRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57(3):264

    CAS  PubMed  Google Scholar 

  • Soheilyfar S et al (2018) In vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer. J BUON 23(5):1290–1296

    PubMed  Google Scholar 

  • Sohn EJ et al (2015) Upregulation of miRNA3195 and miRNA374b mediates the anti-angiogenic properties of melatonin in hypoxic PC-3 prostate cancer cells. J Cancer 6(1):19

    PubMed  PubMed Central  Google Scholar 

  • Tamtaji OR et al (2019) Melatonin and pancreatic cancer: Current knowledge and future perspectives. J Cell Physiol 234(5):5372–5378

    CAS  PubMed  Google Scholar 

  • Tan X et al (2012) cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic miRNA-23a. Proc Natl Acad Sci 109(39):15805–15810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DX et al (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61(1):27–40

    CAS  PubMed  Google Scholar 

  • Toma JG et al (1987) Effects of olfactory bulbectomy, melatonin, and/or pinealectomy on three sublines of the Dunning R3327 rat prostatic adenocarcinoma. J Pineal Res 4(3):321–338

    CAS  PubMed  Google Scholar 

  • Tsai M-M et al (2014) miRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett 351(2):222–231

    CAS  PubMed  Google Scholar 

  • Ueda R et al (2009) Dicer-regulated miRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci 106(26):10746–10751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ujifuku K et al (2010) MiR-195, miR-455-3p and miR-10a∗ are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296(2):241–248

    CAS  PubMed  Google Scholar 

  • Visani M et al (2014) Expression of 19 miRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III. Mol Oncol 8(2):417–430

    CAS  PubMed  Google Scholar 

  • Walter BA et al (2013) Comprehensive miRNA profiling of prostate cancer. J Cancer 4(5):350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C et al (2015) MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget 6(34):36231

    PubMed  PubMed Central  Google Scholar 

  • Wang T-H et al (2018) Melatonin inhibits the progression of hepatocellular carcinoma through miRNA let7i-3p mediated RAF1 reduction. Int J Mol Sci 19(9):2687

    PubMed Central  Google Scholar 

  • Wilhelm SM et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140

    CAS  PubMed  Google Scholar 

  • Wu S et al (2012) Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer 12(1):535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S et al (2015) miR-125b suppresses proliferation and invasion by targeting MCL1 in gastric cancer. BioMed Research Int. https://doi.org/10.1155/2015/365273

    Article  Google Scholar 

  • Xu C-S et al (2015) Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J Transl Med 13(1):95

    PubMed  PubMed Central  Google Scholar 

  • Yan C et al (2017) PVT 1-derived miR-1207-5p promotes breast cancer cell growth by targeting STAT 6. Cancer Sci 108(5):868–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W et al (2015) miRNA-92a contributes to tumor growth of human hepatocellular carcinoma by targeting FBXW7. Oncol Rep 34(5):2576–2584

    CAS  PubMed  Google Scholar 

  • Yang Y et al (2016) miRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma. Oncol Rep 36(5):2553–2562

    CAS  PubMed  Google Scholar 

  • Yang J et al (2018) miRNA-181a inhibits autophagy by targeting Atg5 in hepatocellular carcinoma. Front Biosci 23:388–396

    CAS  Google Scholar 

  • Yano S, Moseley K, Azen C (2013) Large neutral amino acid supplementation increases melatonin synthesis in phenylketonuria: a new biomarker. J Pediatr 162(5):999–1003

    CAS  PubMed  Google Scholar 

  • Yu X et al (2017) Modulation of chemoresponsiveness to platinum-based agents by miRNAs in cancer. Am J Cancer Res 7(9):1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeljic K et al (2018) miRNA meta-signature of oral cancer: evidence from a meta-analysis. Upsala J Med Sci 123(1):43–49

    PubMed  PubMed Central  Google Scholar 

  • Zeng Y-B et al (2016) miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1. Cancer Cell Int 16(1):63

    PubMed  PubMed Central  Google Scholar 

  • Zhang H-L et al (2013) An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl 15(2):231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-J et al (2015) miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. Int J Clin Exp Pathol 8(5):5168

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Xu J, Zhang R (2018) SRPX2 regulates colon cancer cell metabolism by miR-192/215 via PI3K-Akt. Am J Transl Res 10(2):483

    PubMed  PubMed Central  Google Scholar 

  • Zheng X et al (2015) miRNA-24 induces cisplatin resistance by targeting PTEN in human tongue squamous cell carcinoma. Oral Oncol 51(11):998–1003

    CAS  PubMed  Google Scholar 

  • Zheng Q et al (2017a) Prognostic role of miRNAs in human gastrointestinal cancer: a systematic review and meta-analysis. Oncotarget 8(28):46611

    PubMed  PubMed Central  Google Scholar 

  • Zheng X et al (2017b) Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int J Biol Sci 13(2):245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X et al (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90(2):144–155

    CAS  PubMed  Google Scholar 

  • Zhou L et al (2016) Downregulation of miR-221/222 by a miRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 12(6):4419–4426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Huang Q, Zhu H (2018) Melatonin inhibits the proliferation of gastric cancer cells through regulating the miR-16-5p-Smad3 pathway. DNA Cell Biol 37(3):244–252

    CAS  PubMed  Google Scholar 

  • Zuccari D et al (2017) Melatonin regulates the tumor suppressor miR-148a-3p involved in angiogenesis and metastasis of breast cancer. AACR. https://doi.org/10.1158/1538-7445.AM2017-1477

    Article  Google Scholar 

  • Zuo Z-H et al (2015) Oncogenic activity of miR-650 in prostate cancer is mediated by suppression of CSR1 expression. Am J Pathol 185(7):1991–1999

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work financially supported by the Stem Cell and Regenerative Medicine Institute (SCARM) and Research Vice-Chancellor of Tabriz University of Medical Sciences (Ph.D. Thesis No. 59577).

Author information

Authors and Affiliations

Authors

Contributions

PP & NFM and MR Conceptualization, Writing—review & editing. VV: Writing -original draft. FP: Writing—review: YF & MG: editing. AI: Writing. SH Writing. MN Supervision. HN Supervision.

Corresponding authors

Correspondence to Hamid Reza Nejabati or Mohammad Nouri.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest and agree to participate.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Publish

Agree

Informed Consent

No need for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmohammad, P., Maroufi, N.F., Rashidi, M. et al. Potential Therapeutic Effects of Melatonin Mediate via miRNAs in Cancer. Biochem Genet 60, 1–23 (2022). https://doi.org/10.1007/s10528-021-10104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10104-4

Keywords

Navigation