Skip to main content
Log in

Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Scan time reduction is necessary for volumetric acquisitions to improve workflow productivity and to reduce motion artifacts during MRI procedures. We explored the possibility that Compressed Sensing-4 (CS-4) can be employed with 3D-turbo-field-echo T1-weighted (3D-TFE-T1W) sequence without compromising subcortical measurements on clinical 1.5 T MRI.

Materials and methods

Thirty-three healthy volunteers (24 females, 9 males) underwent imaging scans on a 1.5 T MRI equipped with a 12-channel head coil. 3D-TFE-T1W for whole-brain coverage was performed with different acceleration factors, including SENSE-2, SENSE-4, CS-4. Freesurfer, FSL’s FIRST, and volBrain packages were utilized for subcortical segmentation. All processed data were assessed using the Wilcoxon signed-rank test.

Results

The results obtained from SENSE-2 were considered as references. For SENSE-4, the maximum signal-to-noise ratio (SNR) drop was detected in the Accumbens (51.96%). For CS-4, the maximum SNR drop was detected in the Amygdala (10.55%). Since the SNR drop in CS-4 is relatively small, the SNR in all of the subcortical volumes obtained from SENSE-2 and CS-4 are not statistically different (P > 0.05), and their Pearson’s correlation coefficients are larger than 0.90. The maximum biases of SENSE-4 and CS-4 were found in the Thalamus with the mean of differences of 1.60 ml and 0.18 ml, respectively.

Conclusion

CS-4 provided sufficient quality of 3D-TFE-T1W images for 1.5 T MRI equipped with a 12-channel receiver coil. Subcortical volumes obtained from the CS-4 images are consistent among different post-processing packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  2. Ashburner J, Friston KJ (2000) Voxel-based morphometry - the methods. Neuroimage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  3. Azevedo CJ, Cen SY, Khadka S, Liu S, Kornak J, Shi Y et al (2018) Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease. Ann Neurol 83(2):223–234

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E et al (2016) Brain atrophy in Alzheimer’s Disease and aging. Ageing Res Rev 30:25–48

    Article  PubMed  Google Scholar 

  5. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D et al (2008) The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    Article  PubMed  PubMed Central  Google Scholar 

  6. Petersen RC, Aisen PS, Beckett LA et al (2010) Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74(3):201–209

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Erp TG, Hibar DP, Rasmussen JM et al (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21(4):547–553

    Article  PubMed  Google Scholar 

  8. van Erp TG, Greve DN, Rasmussen J et al (2014) A multi-scanner study of subcortical brain volume abnormalities in schizophrenia. Psychiatry Res 222(1–2):10–16

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jovicich J, Czanner S, Han X et al (2009) MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46(1):177–192

    Article  PubMed  Google Scholar 

  10. Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R et al (2016) Motion correction in MRI of the brain. Phys Med Biol 61(5):R32–R56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Havsteen I, Ohlhues A, Madsen KH, Nybing JD, Christensen H, Christensen A (2017) Are movement artifacts in magnetic resonance imaging a real problem?—a narrative review. Front Neurol 8:232

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reuter M, Tisdall MD, Qureshi A, Buckner RL, van der Kouwe AJW, Fischl B (2015) Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage 15(107):107–115

    Article  Google Scholar 

  13. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  14. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  15. Sodickson DK, Griswold MA, Jakob PM (1999) SMASH imaging. Magn Reson Imaging Clin N Am 7(2):237–254

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton J, Franson D, Seiberlich N (2017) Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc 101:71–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin FH, Huang T, Chen NK, Wang FN, Stufflebeam SM, Belliveau JW et al (2005) Functional MRI using regularized parallel imaging acquisition. Magn Reson Med 54(2):343–353

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leung KK, Malone IM, Ourselin S et al (2015) Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement. Neuroimage 107:46–53

    Article  PubMed  Google Scholar 

  19. Krueger G, Granziera C, Jack CR Jr et al (2012) Effects of MRI scan acceleration on brain volume measurement consistency. J Magn Reson Imaging 36(5):1234–1240

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R (2014) Reliability of brain volume measurements: a test-retest dataset. Sci Data 1:140037

    Article  PubMed  PubMed Central  Google Scholar 

  21. Manning EN, Leung KK, Nicholas JM et al (2017) A comparison of accelerated and non-accelerated MRI scans for brain volume and boundary shift integral measures of volume change: evidence from the ADNI dataset. Neuroinformatics 15(2):215–226

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25(2):72–82

    Article  Google Scholar 

  23. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  PubMed  Google Scholar 

  24. Otazo R, Kim D, Axel L, Sodickson DK (2010) Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med 64(3):767–776

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jaspan ON, Fleysher R, Lipton ML (2015) Compressed sensing MRI: a review of the clinical literature. Br J Radiol 88(1056):20150487

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mussard E, Hilbert T, Forman C, Meuli R, Thiran JP, Kober T (2020) Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction. Magn Reson Med 84(4):1881–1894

    Article  PubMed  Google Scholar 

  27. Smith DS, Li X, Abramson RG, Quarles CC, Yankeelov TE, Welch EB (2013) Potential of compressed sensing in quantitative MR imaging of cancer. Cancer Imaging 13(4):633–644

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mair RW, Hanford LC, Mussard E, Hilbert T, Kober T, Buckner RL (2019) Towards 1 min brain morphometry—evaluating compressed-sensing MPRAGE. In: Proceedings of the International Society for Magnetic Resonance in Medicine. p. 2978

  29. Shin DD, Rettmann D, Takei N, Banerjee S (2020) Compressed Sensed MPRAGE with Parallel Imaging: Image Quality Metrics and Morphometry Study at 3T. In: Proceedings of the International Society for Magnetic Resonance in Medicine. p. 1747

  30. Duan Y, Zhang J, Zhuo Z, Ding J, Ju R, Wang J et al (2020) Accelerating brain 3D T1-weighted turbo field echo MRI using compressed sensing-sensitivity encoding (CS-SENSE). Eur J Radiol 131:109255

    Article  PubMed  Google Scholar 

  31. Geerts-Ossevoort L, deWeerdt E, Duijndam A, van Ijperen G, Peeters H, Doneva M, Nijenhuis M, Huang A. (2018) Compressed SENSE. Speed done right. Every time. Philips® healthcare, Netherlands. https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf. Accessed 05 Jan 2021

  32. Falkovskiy P, Brenner D, Feiweier T et al (2016) Comparison of accelerated T1-weighted whole-brain structural-imaging protocols. Neuroimage 124:157–167

    Article  PubMed  Google Scholar 

  33. Ching CRK, Hua X, Hibar DP, Ward CP, Gunter JL, Bernstein MA et al (2012) the Alzheimers Disease Neuroimaging Initiative. P. M. T. MRI scan acceleration and power to track brain change. MICCAI NIBAD

  34. Ching CR, Hua X, Hibar DP, Ward CP, Gunter JL, Bernstein MA et al (2015) Does MRI scan acceleration affect power to track brain change? Neurobiol Aging 1:167–177

    Article  Google Scholar 

  35. Sartoretti T, Sartoretti E, van Smoorenburg L, Schwenk Á, Mannil M, Graf N et al (2020) Spiral 3-dimensional T1-weighted turbo field echo: increased speed for magnetization-prepared gradient echo brain magnetic resonance imaging. Invest Radiol 55(12):775–784

    Article  CAS  PubMed  Google Scholar 

  36. Sartoretti E, Sartoretti T, Binkert C, Najafi A, Schwenk Á, Hinnen M et al (2019) Reduction of procedure times in routine clinical practice with Compressed SENSE magnetic resonance imaging technique. PLoS ONE 14(4):e0214887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morey RA, Petty CM et al (2009) A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45(3):855–866

    Article  PubMed  Google Scholar 

  38. Chauffert N, Ciuciu P, Kahn J, Weiss P (2014) Variable density sampling with continuous trajectories. SIAM J Imag Sci 7(4):1962–1992

    Article  Google Scholar 

  39. Puy G, Vandergheynst P, Wiaux Y (2011) On variable density compressive sampling. IEEE Signal Process Lett 18(10):595–598

    Article  Google Scholar 

  40. Chauffert N, Weiss P, Kahn J, Ciuciu P (2014) Gradient waveform design for variable density sampling in Magnetic Resonance Imaging. arXiv: Optimization and Control

  41. Takahashi J, Machida Y, Aoba M et al (2021) Noise power spectrum in compressed sensing magnetic resonance imaging. Radiol Phys Technol 14:93–99

    Article  PubMed  Google Scholar 

  42. Geethanath S, Reddy R, Konar AS et al (2013) Compressed sensing MRI: a review. Crit Rev Biomed Eng 41(3):183–204

    Article  PubMed  Google Scholar 

  43. Schoemaker D, Buss C, Head K et al (2016) Hippocampus and amygdala volumes from magnetic resonance images in children: assessing accuracy of FreeSurfer and FSL against manual segmentation. Neuroimage 129:1–14

    Article  PubMed  Google Scholar 

  44. Guo C, Ferreira D, Fink K, Westman E, Granberg T (2019) Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 29(3):1355–1364

    Article  PubMed  Google Scholar 

  45. Manjón JV, Coupé P (2016) volBrain: an online MRI brain volumetry system. Front Neuroinform 27:10–30

    Google Scholar 

  46. Liang P, Shi L, Chen N et al (2015) Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults. Sci Rep 5:18216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang Y, Hojatkashani C, Dinov ID, Sun B, Fan L, Lin X et al (2010) The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and Caucasian cohorts. Neuroimage 51:33–41

    Article  PubMed  Google Scholar 

  48. Bai J, Abdul-Rahman MF, Rifkin-Graboi A, Chong YS, Kwek K, Saw SM et al (2012) Population differences in brain morphology and microstructure among Chinese, Malay and Indian neonates. PLoS ONE 7:e47816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takahashi R, Ishii K, Kakigi T, Yokoyama K (2011) Gender and age differences in normal adult human brain: voxel-based morphometric study. Hum Brain Mapp 32:1050–1058

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Faculty of Associated Medical Sciences, Chiang Mai University. We thank Philips (Thailand) Ltd., and Philips Healthcare, Asia Pacific for providing the Compressed SENSE technique. We thank Laohawee N., Manonai N., Porploy J., and Yingmeesakul S. for data collecting. The authors wish to thank Ms. Samantha Burman for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uten Yarach.

Ethics declarations

Conflict of interest

Dr. Prapatsorn Sangpin is an employee of Philips Healthcare. All other authors have no conflict of interest to declare.

Ethical standards

The measurements on human subjects in this study have been approved by the local ethics committee and have therefore been performed following the ethical standards laid down in the Declaration of Helsinki. All involved participants have given their informed consent before recruitment in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarach, U., Saekho, S., Setsompop, K. et al. Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures. Magn Reson Mater Phy 34, 915–927 (2021). https://doi.org/10.1007/s10334-021-00939-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-021-00939-8

Keywords

Navigation