Skip to main content
Log in

Quasi-phase matching for a nonlinear photonic waveguide enabled by monolayer transition-metal dichalcogenide arrays

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Quasi-phase matching (QPM) enables flexible and efficient second-order nonlinearity ranging from bulk nonlinear crystals to integrated nonlinear photonic devices. Here, we propose a QPM nonlinear photonic device constructed using monolayer transition-metal dichalcogenide (TMDC) arrays attached on a silicon nitride waveguide. QPM second harmonic generation comes from a nonlinear interaction between evanescent fields of fundamental-frequency and second-harmonic guided modes with periodical monolayer TMDC arrays. Dispersions of the device can be tuned by changing the geometric parameters of the waveguide while the nonlinear overlap integral and the QPM condition can be controlled through the distribution of TMDC arrays. Our design provides a practical way to efficiently shape second-order nonlinearities in complementary metal–oxide–semiconductor-compatible photonic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data that support the results within this paper and other findings of the study are available from the corresponding authors upon reasonable request.

Code availability

The custom code and the mathematical algorithm used to obtain the results within this paper are available from the corresponding authors upon reasonable request.

References

  1. J.A. Armstrong et al., Phys. Rev. 127, 1918 (1962)

    Article  ADS  Google Scholar 

  2. T. Wang et al., Sci. China Technol. Sci. 63, 1110 (2020)

    Article  ADS  Google Scholar 

  3. S. Zhu, Y.Y. Zhu, N.B. Ming, Science 278, 843 (1997)

    Article  ADS  Google Scholar 

  4. B.Q. Chen et al., Phys. Rev. Lett. 115, 083902 (2015)

    Article  ADS  Google Scholar 

  5. H.Y. Leng et al., Nat. Commun. 2, 429 (2011)

    Article  ADS  Google Scholar 

  6. T. Ellenbogen et al., Nat. Photonics 3, 395 (2009)

    Article  ADS  Google Scholar 

  7. D. Wei et al., Nat. Commun. 10, 4193 (2019)

    Article  ADS  Google Scholar 

  8. S. Liu et al., Nat. Commun. 10, 3208 (2019)

    Article  ADS  Google Scholar 

  9. Y. Kong et al., Adv. Mater. 32, e1806452 (2020)

    Article  Google Scholar 

  10. J. Leuthold, C. Koos, W. Freude, Nat. Photonics 4, 535 (2010)

    Article  ADS  Google Scholar 

  11. M. Kauranen, A.V. Zayats, Nat. Photonics 6, 737 (2012)

    Article  ADS  Google Scholar 

  12. A.S. Helmy et al., Laser Photonics Rev. 5, 272 (2011)

    Article  ADS  Google Scholar 

  13. D.T.H. Tan, K.J.A. Ooi, D.K.T. Ng, Photonics Res. 6, B50 (2018)

    Article  Google Scholar 

  14. C. Wang et al., Opt. Express 25, 6963 (2017)

    Article  ADS  Google Scholar 

  15. B. Bijlani, P. Abolghasem, A.S. Helmy, Appl. Phys. Lett. 92, 101124 (2008)

    Article  ADS  Google Scholar 

  16. R. Luo et al., Optica 5, 1006 (2018)

    Article  ADS  Google Scholar 

  17. R. Luo et al., Laser Photonics Rev. 13, 7 (2019)

    Google Scholar 

  18. L. Scaccabarozzi et al., Opt. Lett. 31, 3626 (2006)

    Article  ADS  Google Scholar 

  19. L. Chang et al., Optica 3, 531 (2016)

    Article  ADS  Google Scholar 

  20. Y. Niu et al., Appl. Phys. Lett. 116, 101104 (2020)

    Article  ADS  Google Scholar 

  21. C. Wang et al., Optica 5, 1438 (2018)

    Article  ADS  Google Scholar 

  22. M. Jankowski et al., Optica 7, 40 (2020)

    Article  ADS  Google Scholar 

  23. L.A. Eyres et al., Appl. Phys. Lett. 79, 904 (2001)

    Article  ADS  Google Scholar 

  24. E. Timurdogan, C.V. Poulton, M.J. Byrd, M.R. Watts, Nat. Photonics 11, 200 (2017)

    Article  ADS  Google Scholar 

  25. D.D. Hickstein et al., Nat. Photonics 13, 494 (2019)

    Article  ADS  Google Scholar 

  26. N. Singh, M. Raval, A. Ruocco, M.R. Watts, Light Sci. Appl. 9, 17 (2020)

    Article  ADS  Google Scholar 

  27. Q.H. Wang et al., Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  28. K.F. Mak, J. Shan, Nat. Photonics 10, 216 (2016)

    Article  ADS  Google Scholar 

  29. G. Wang et al., Rev. Mod. Phys. 90, 021001 (2018)

    Article  ADS  Google Scholar 

  30. X. Wen, Z. Gong, D. Li, InfoMat 1, 317 (2019)

    Article  Google Scholar 

  31. G. Hu et al., Nat. Photonics 13, 467 (2019)

    Article  ADS  Google Scholar 

  32. A. Saynatjoki et al., Nat. Commun. 8, 893 (2017)

    Article  ADS  Google Scholar 

  33. A. Dasgupta, J. Gao, X. Yang, Nano Lett. 19, 6511 (2019)

    Article  ADS  Google Scholar 

  34. T.K. Fryett, A. Zhan, A. Majumdar, Opt. Lett. 42, 3586 (2017)

    Article  ADS  Google Scholar 

  35. B. Chen et al., Nanophotonics 9, 2587 (2020)

    Article  Google Scholar 

  36. F. Yi et al., Nano Lett. 16, 1631 (2016)

    Article  ADS  Google Scholar 

  37. T.K. Fryett et al., 2D Mater. 4, 015031 (2017)

    Article  Google Scholar 

  38. H. Chen et al., Light Sci. Appl. 6, e17060 (2017)

    Article  Google Scholar 

  39. J.H. Chen et al., Light Sci. Appl. 8, 8 (2019)

    Article  ADS  Google Scholar 

  40. Q. Guo et al., Nano Lett. 20, 7956 (2020)

    Article  ADS  Google Scholar 

  41. Y. Rho et al., ACS Appl. Mater. Interfaces 11, 39385 (2019)

    Article  Google Scholar 

  42. F. Qin et al., Nat. Commun. 12, 32 (2021)

    Article  ADS  Google Scholar 

  43. R. Mupparapu et al., Adv. Mater. Interfaces 7, 2000858 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11904424), the National Key R&D Program of China (2016YFA0301300), the Key-Area R&D Program of Guangdong Province (2018B030329001), and the Guangdong Special Support Program (2019JC05X397). We also like to thank Jin Liu and Zeyang Liao for useful discussions.

Funding

National Natural Science Foundation of China (11904424); National Key R&D Program of China (2016YFA0301300); Key-Area R&D Program of Guangdong Province (2018B030329001); the Guangdong Special Support Program (2019JC05X397).

Author information

Authors and Affiliations

Authors

Contributions

DZW conceived the idea. JCH performed the theoretical derivations and numerical simulations under the guidance of DZW and XHW. JCH and DZW wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dunzhao Wei.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Wei, D. & Wang, X. Quasi-phase matching for a nonlinear photonic waveguide enabled by monolayer transition-metal dichalcogenide arrays. J. Korean Phys. Soc. 79, 380–385 (2021). https://doi.org/10.1007/s40042-021-00213-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00213-z

Keywords

Navigation