Skip to main content
Log in

BCC-HCP-FCC Multiple Transformations and ε Loop in the Fe-Cr-Co-Mn System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase transformations and phase stability in the Fe-Cr-Co-20Mn (at.%) alloy system were investigated using optical microscopy, transmission electron microscopy, x-ray diffraction, and vibrating sample magnetometry. Thermal-induced martensitic transformation from the BCC α parent phase to the HCP ε martensite phase was observed in the samples with near 36Fe-24Cr-20Co-20Mn compositions. Bainitic transformation from the α phase occurred with aging. Although the α parent phase coexisted with the ε martensite phase in the as-quenched specimen and transformation did not proceed with sub-zero treatment, the ε martensite was completely induced by cold rolling. Furthermore, the FCC γ phase was obtained by heavy deformation. These results indicate that multiple martensitic transformations from α to ε and ε to γ occurred. The γε martensitic transformation was also observed for 48Fe-16Cr-16Co-20Mn. The phase stabilities of the α, ε, and γ phases were similar. The calculated T0 lines successfully predicted the αε martensitic transformation when the ε phase was more stable in the database. Thermodynamic analysis revealed that magnetic ordering in the α phase affected the phase stability, resulting in the novel ε loop in addition to the conventional γ loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  3. M.-H. Tsai, and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2(3), p 107–123.

    Article  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93.

    Article  Google Scholar 

  5. D.B. Miracle, and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  ADS  Google Scholar 

  6. A. Gali, and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78.

    Article  Google Scholar 

  7. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(15), p 5743–5755.

    Article  ADS  Google Scholar 

  8. M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, and E.P. George, Plastic Deformation of Single Crystals of the Equiatomic Cr−Mn−Fe−Co−Ni High-Entropy Alloy in Tension and Compression from 10 K to 1273 K, Acta Mater., 2021, 203, p 116454.

    Article  Google Scholar 

  9. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.

    Article  ADS  Google Scholar 

  10. C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, On the Superior Hot Hardness and Softening Resistance of AlCoCrxFeMo05Ni High-Entropy Alloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2011, 528(10–11), p 3581–3588.

    Article  Google Scholar 

  11. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical Properties of Low-Density, Refractory Multi-Principal Element Alloys of the Cr–Nb–Ti–V–Zr System, Mater. Sci. Eng. A, 2013, 565, p 51–62.

    Article  Google Scholar 

  12. F. Maresca, and W.A. Curtin, Mechanistic Origin of High Strength in Refractory BCC High Entropy Alloys up to 1900K, Acta Mater., 2020, 182, p 235–249.

    Article  ADS  Google Scholar 

  13. M.-H. Tsai, Physical Properties of High Entropy Alloys, Entropy, 2013, 15(12), p 5338–5345.

    Article  ADS  MATH  Google Scholar 

  14. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-off, Nature, 2016, 534(7606), p 227–230.

    Article  ADS  Google Scholar 

  15. K. Niitsu, M. Asakura, K. Yuge, and H. Inui, Prediction of Face-Centered Cubic Single-Phase Formation for Non-Equiatomic Cr–Mn–Fe–Co–Ni High-Entropy Alloys Using Valence Electron Concentration and Mean-Square Atomic Displacement, Mater. Trans., 2020, 61(9), p 1874–1880.

    Article  Google Scholar 

  16. J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom, 2013, 65(12), p 1759–1771.

    Article  Google Scholar 

  17. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang, Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A., 2005, 36(5), p 1263–1271.

    Article  Google Scholar 

  18. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTix Alloys, Intermetallics, 2007, 15(3), p 357–362.

    Article  Google Scholar 

  19. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Microstructures and Compressive Properties of Multicomponent AlCoCrFeNiMox Alloys, Mater. Sci. Eng. A, 2010, 527(26), p 6975–6979.

    Article  Google Scholar 

  20. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-Component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater., 2011, 59(1), p 182–190.

    Article  ADS  Google Scholar 

  21. C. Zhang, F. Zhang, S. Chen, and W. Cao, Computational Thermodynamics Aided High-Entropy Alloy Design, Jom, 2012, 64(7), p 839–845.

    Article  Google Scholar 

  22. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, An Understanding of High Entropy Alloys from Phase Diagram Calculations, Calphad, 2014, 45, p 1–10.

    Article  Google Scholar 

  23. H. Mao, H.-L. Chen, and Q. Chen, TCHEA1: A Thermodynamic Database Not Limited for “High Entropy” Alloys, J. Phase Eqilib. Diffus., 2017, 38(4), p 353–368.

    Article  Google Scholar 

  24. H.-L. Chen, H. Mao, and Q. Chen, Database Development and Calphad Calculations for High Entropy Alloys: Challenges, Strategies, and Tips, Mater. Chem. Phys., 2018, 210, p 279–290.

    Article  Google Scholar 

  25. H. Okamoto, Desk Handbook Phase Diagrams for Binary Alloys, 2nd edn. (ASM International, 2010)

  26. C. Zener, Impact of Magnetism Upon Metallurgy, Trans. Am. Inst. Min. Metall. Eng., 1955, 203(5), p 619–630.

    Google Scholar 

  27. C. Allibert, C. Bernard, G. Effenberg, H.D. Nüssler, and P.J. Spencer, A Thermodynamic Evaluation of the FeCoCr System, Calphad, 1981, 5(4), p 227–237.

    Article  Google Scholar 

  28. M. Dombre, O. Silva Campos, N. Valignat, C. Allibert, C. Bernard, and J. Driole, Solid State Phase Equilibrium in the Ternary Fe-Co-Cr System: Experimental Determination of Isothermal Sections in the Temperature Range 800–1300 °C, J. Less Common Met., 1979, 66(1), p 1–11.

    Article  Google Scholar 

  29. M. Okada, G. Thomas, M. Homma, and H. Kaneko, Microstructure and Magnetic Properties of Fe-Cr-Co Alloys, IEEE Trans. Magn., 1978, 14(4), p 245–252.

    Article  ADS  Google Scholar 

  30. H. Kaneko, M. Homma, K. Nakamura, M. Okada, and G. Thomas, Phase Diagram of Fe-Cr-Co Permanent Magnet System, IEEE Trans. Magn., 1977, 13(5), p 1325–1327.

    Article  ADS  Google Scholar 

  31. M. Homma, M. Okada, T. Minowa, and E. Horikoshi, Fe-Cr-Co Permanent Magnet Alloys Heat-Treated in the Ridge Region of the Miscibility Gap, IEEE Trans. Magn., 1981, 17(6), p 3473–3478.

    Article  ADS  Google Scholar 

  32. T. Nishizawa, M. Hasebe, and M. Ko, Thermodynamic Analysis of Solubility and Miscibility Gap in Ferromagnetic Alpha Iron Alloys, Acta Metall., 1979, 27(5), p 817–828.

    Article  Google Scholar 

  33. H. Masumoto, On the Thermal Expansion of Alloys of Cobalt, Iron and Chromium, and a New Alloy “Stainless-Invar&rdquo, J. Jpn. Inst. Met., 1938, 2(4), p 141–146.

    Article  Google Scholar 

  34. J.C. Zhao, The fcc/hcp Phase Equilibria and Phase Transformation in Cobalt-Based Binary Systems, Z. Fur Metallkunde, 1999, 90(3), p 223–232.

    Google Scholar 

  35. I. Ohnuma, S. Shimenouchi, T. Omori, K. Ishida, and R. Kainuma, Experimental Determination and Thermodynamic Evaluation of Low-Temperature Phase Equilibria in the Fe-Ni Binary System, Calphad-Comput. Coupling Ph. Diagr. Thermochem., 2019, 67, p 101677.

    Article  Google Scholar 

  36. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153–190.

    Article  Google Scholar 

  37. L.M. Guerrero, P. La Roca, F. Malamud, A. Baruj, and M. Sade, Composition Effects on the fcc-hcp Martensitic Transformation and on the Magnetic Ordering of the fcc Structure in Fe-Mn-Cr Alloys, Mater. Des., 2017, 116, p 127–135.

    Article  Google Scholar 

  38. L.M. Guerrero, P. La Roca, F. Malamud, A. Baruj, and M. Sade, A Short Review on the Effect of Cr on the fcc–hcp Phase Transition in Fe–Mn-Based Alloys, Shape Memory Superelasticity, 2020, 6(2), p 202–212.

    Article  ADS  Google Scholar 

  39. A. Baruj, A.F. Guillermet, and M. Sade, The fcc/hcp Relative Phase Stability in the Fe-Mn-Co System: Martensitic Transformation Temperatures, Assessment of Gibbs Energies And Thermodynamic Calculation of T-0 Lines, J. Phys. IV, 1997, 7(C5), p 405–410.

    Google Scholar 

  40. M.D. Acciarri, P. La Roca, L.M. Guerrero, A. Baruj, J. Curiale, and M. Sade, Effect of FCC Anti-Ferromagnetic Ordering on the Stability of Phases in Fe60-xMn30Cr10Cox High Entropy Alloys, J. Alloys Compd, 2020, 823, p 153845.

    Article  Google Scholar 

  41. K. Ishida, and T. Nishizawa, Effect of Alloying Elements on Stability of Epsilon Iron, Trans. Jpn Inst. Metals, 1974, 15(3), p 225–231.

    Article  Google Scholar 

  42. T. Tadaki, C.J. Qiang, and K. Shimizu, Analytical Electron-Microscope Study on the Bainitic Transformation in Beta-Phase Cu-Zn-Au Alloys, Mater. Trans. JIM, 1991, 32(8), p 757–765.

    Article  Google Scholar 

  43. B.C. Muddle, J.F. Nie, and G.R. Hugo, Application of the Theory of Martensite Crystallography to Displacive Phase Transformations in Substitutional Nonferrous Alloys, Metall. Mater. Trans. A., 1994, 25(9), p 1841–1856.

    Article  Google Scholar 

  44. M.H. Wu, J. Perkins, and C.M. Wayman, Long Range Order, Antiphase Domain Structures, and the Formation Mechanism of α1 (“Bainite”) Plates in A Cu-Zn-Al alloy, Acta Metall., 1989, 37(7), p 1821–1837.

    Article  Google Scholar 

  45. K. Takezawa, and S. Sato, Nucleation and Growth of Bainite Crystals in Cu-Zn-AI Alloys, Metall. Trans. A, 1990, 21(6), p 1541–1545.

    Article  Google Scholar 

  46. L.-G. Bujoreanu, On the Influence of Austenitization on the Morphology of α-Phase in Tempered Cu–Zn–Al Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 481–482, p 395–403.

    Article  Google Scholar 

  47. Y. Sutou, N. Koeda, T. Omori, R. Kainuma, and K. Ishida, Effects of Ageing on Bainitic and Thermally Induced Martensitic Transformations in Ductile Cu–Al–Mn-Based Shape Memory Alloys, Acta Mater., 2009, 57(19), p 5748–5758.

    Article  ADS  Google Scholar 

  48. S. Motomura, T. Hara, T. Omori, R. Kainuma, and M. Nishida, Morphological and Chemical Analysis of Bainite in Cu-17Al-11Mn (at%) Alloys by Using Orthogonal FIB-SEM and Double-EDS STEM, Microscopy (Oxf), 2016, 65(3), p 243–252.

    Article  Google Scholar 

  49. R. Lagneborg, The Martensite Transformation in 18% Cr-8% Ni Steels, Acta Metall., 1964, 12(7), p 823–843.

    Article  Google Scholar 

  50. P.L. Mangonon, and G. Thomas, The Martensite Phases in 304 Stainless Steel, Metall. Trans., 1970, 1(6), p 1577–1586.

    Article  Google Scholar 

  51. G.B. Olson, and M. Cohen, A Mechanism for the Strain-Induced Nucleation of Martensitic Transformations, J. Less Common Met., 1972, 28(1), p 107–118.

    Article  Google Scholar 

  52. Y. Wada, N. Nakada, and S. Onaka, Internal Stress of Plate Martensite Depending on Aspect Ratio via fcc-hcp Martensitic Transformation in Metastable Austenitic Stainless Steels, Mater. Trans., 2020, 61(1), p 61–67.

    Article  Google Scholar 

  53. K.I. Shimizu, and Y. Tanaka, The γ → ε → α’ Martensitic Transformations in an Fe–Mn–C Alloy, Trans. J. Inst. Met., 1978, 19(12), p 685–693.

    Article  Google Scholar 

  54. W.Y. Jang, Q. Gu, J. Van Humbeeck, and L. Delaey, Microscopic Observation of γ-Phase and ε- and α′-Martensite in Fe-Mn-Si-Based Shape Memory Alloys, Mater. Charact., 1995, 34(2), p 67–72.

    Article  Google Scholar 

  55. S.T. Pisarik, and D.C. Van Aken, Crystallographic Orientation of the ε → α′ Martensitic (Athermal) Transformation in a FeMnAlSi Steel, Metall. Mater. Trans. A., 2014, 45(8), p 3173–3178.

    Article  Google Scholar 

  56. Y. Tsuchiya, T. Bitoh, S. Murayama, S. Chikazawa, and Y. Hamaguchi, Magnetic Properties and Magnetic Phase Diagram of bcc Cr–Fe–Mn Alloys, J. Phys. Soc. Jpn., 1996, 65(10), p 3289–3293.

    Article  ADS  Google Scholar 

  57. B. Li, H.L. Alberts, A.M. Strydom, B.M. Wu, A.R.E. Prinsloo, and Z.J. Chen, Magnetic Properties of Cr–Fe–Mn Alloys, J. Magn. Magn. Mater., 2009, 321(2), p 61–73.

    Article  ADS  Google Scholar 

  58. R.J. Weiss, and K.J. Tauer, Components of the Thermodynamic Functions of Iron, Phys. Rev., 1956, 102(6), p 1490–1495.

    Article  ADS  Google Scholar 

  59. L. Kaufman, E.V. Clougherty, and R.J. Weiss, The Lattice Stability of Metals—III Iron, Acta Metall., 1963, 11(5), p 323–335.

    Article  Google Scholar 

  60. T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, and K. Ishida, Superelastic Effect in Polycrystalline Ferrous Alloys, Science, 2011, 333(6038), p 68–71.

    Article  ADS  Google Scholar 

  61. T. Omori, and R. Kainuma, Martensitic Transformation and Superelasticity in Fe–Mn–Al-Based Shape Memory Alloys, Shape Memory Superelasticity, 2017, 3(4), p 322–334.

    Article  Google Scholar 

  62. T. Nishizawa, Progress of CALPHAD, Mater. Trans., JIM, 1992, 33(8), p 713–722.

    Article  Google Scholar 

  63. T. Nishizawa, Effect of Magnetic Transition on Phase Equilibria in Iron Alloys, JPE, 1995, 16(5), p 379–389.

    Article  Google Scholar 

  64. K. Otsuka, T. Ohba, M. Tokonami, and C.M. Wayman, New Description of Long-Period Stacking Order Structures of Martensites in Beta-Phase Alloys, Scr. Metall. Mater., 1993, 29(10), p 1359–1364.

    Article  Google Scholar 

  65. K. Ishida, K. Shibuya, and T. Nishizawa, γ-Loops in Fe-Mn-V Fe-Mn-Mo and Fe-Mn-Si Systems, J. Jpn. Inst. Met., 1973, 37(12), p 1305–1313.

    Article  Google Scholar 

  66. X. Xu, T. Omori, M. Nagasako, A. Okubo, R.Y. Umetsu, T. Kanomata, K. Ishida, and R. Kainuma, Cooling-Induced Shape Memory Effect and Inverse Temperature Dependence of Superelastic Stress in Co2Cr(Ga, Si) Ferromagnetic Heusler Alloys, Appl Phys Lett, 2013, 103(16), p 164104.

    Article  ADS  Google Scholar 

  67. X. Xu, M. Nagasako, M. Kataoka, R.Y. Umetsu, T. Omori, T. Kanomata, and R. Kainuma, Anomalous Physical Properties Of Heusler-Type Co2Cr(Ga, Si) Alloys and Thermodynamic Study on reentrant Martensitic Transformation, Phys. Rev. B, 2015, 91(10), p 104434.

    Article  ADS  Google Scholar 

  68. T. Odaira, S. Xu, X. Xu, T. Omori, and R. Kainuma, Elastocaloric Switching Effect Induced by Reentrant Martensitic Transformation, Appl. Phys. Rev., 2020, 7(3), p 031406.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Omori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omori, T., Ando, K., Ohnuma, I. et al. BCC-HCP-FCC Multiple Transformations and ε Loop in the Fe-Cr-Co-Mn System. J. Phase Equilib. Diffus. 42, 735–747 (2021). https://doi.org/10.1007/s11669-021-00901-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00901-0

Keywords

Navigation