Skip to main content
Log in

Enhancing the stability of synthesized curcumin by spray-drying microencapsulation with soy lecithin and gum Arabic

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Curcumin is a phytochemical with many beneficial biological activities, but the low solubility, stability and bioavailability have restricted its application range. To enhance curcumin stability, we microencapsulated curcumin by spray-drying together with soy lecithin as the core material and gum Arabic as the shell material. SEM images showed that the spray-dried microcapsules were irregular in shape and 4.3 ± 2.0 µm (mean ± standard deviation) in size. Results of Fourier transform infrared spectroscopy and differential scanning calorimetry exhibited intermolecular interactions between components in the microcapsules. X-ray diffraction patterns revealed the amorphous character of the microcapsules, which explained their high solubility in water. Increasing the shell/core mass ratio from 1:1 to 3:1 significantly improved not only the encapsulation efficiency of curcumin, but also the stability of the encapsulated curcumin toward light, high temperature, and neutral—basic pH conditions. However, increasing the shell/core ratio from 3:1 to 5:1 did not yield significant improvements in encapsulation efficiency, solubility and stability of curcumin. At 70 °C, curcumin in the microcapsules was stable for all studied core:shell ratios, suggesting an interaction between curcumin and gum arabic that blocks the degradation mechanism of curcumin. This study showed that microencapsulation using gum arabic as a wall material can be implemented to protect curcumin from adverse conditions, thus promoting its applicability in the food and the pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The authors can supply the data and material on request to the corresponding author.

References

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  Google Scholar 

  • Akhavan S, Assadpour E, Katouzian I, Jafari SM (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 74:132–146

    Article  CAS  Google Scholar 

  • Ali BH, Ziada A, Blunden G (2009) Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol 47(1):1–8

    Article  CAS  Google Scholar 

  • Babu NJ, Nangia A (2011) Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des 11(7):2662–2679

    Article  CAS  Google Scholar 

  • Bertolini A, Siani A, Grosso C (2001) Stability of monoterpenes encapsulated in gum arabic by spray-drying. J Agric Food Chem 49(2):780–785

    Article  CAS  Google Scholar 

  • Bucurescu A, Blaga AC, Estevinho BN, Rocha F (2018) Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food Bioprocess Technol 11(10):1795–1806

    Article  CAS  Google Scholar 

  • Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L (2012) Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 17(5):5972–5987

    Article  CAS  Google Scholar 

  • da Silva FC, da Fonseca CR, de Alencar SM, Thomazini M, de Carvalho Balieiro JC, Pittia P, Favaro-Trindade CS (2013) Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food Bioprod Process 91(1):28–36

    Article  Google Scholar 

  • Dai L, Wei Y, Sun C, Mao L, McClements DJ, Gao Y (2018) Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocoll 85:75–85

    Article  CAS  Google Scholar 

  • Dhenadhayalan N, Mythily R, Kumaran R (2014) Fluorescence spectral studies of Gum Arabic: multi-emission of Gum Arabic in aqueous solution. J Lumin 155:322–329

    Article  CAS  Google Scholar 

  • Ding S, Zhao L, Qi Y, Lv QQ (2014) Preparation and characterization of lecithin-nano Ni/Fe for effective removal of PCB77. J Nanomater 2014:7. https://doi.org/10.1155/2014/678489

    Article  CAS  Google Scholar 

  • Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn C, Jabbari E, Linder M, Arab-Tehrany E (2014) Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 461(1–2):519–528

    Article  CAS  Google Scholar 

  • Hasan M, Messaoud GB, Michaux F, Tamayol A, Kahn C, Belhaj N, Linder M, Arab-Tehrany E (2016) Chitosan-coated liposomes encapsulating curcumin: study of lipid–polysaccharide interactions and nanovesicle behavior. RSC Adv 6(51):45290–45304

    Article  CAS  Google Scholar 

  • Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92

    Article  Google Scholar 

  • Jin H-H, Lu Q, Jiang J-G (2016) Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J Dairy Sci 99(3):1780–1790

    Article  CAS  Google Scholar 

  • Kharat M, Du Z, Zhang G, McClements DJ (2017) Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem 65(8):1525–1532

    Article  CAS  Google Scholar 

  • Kim S, Diab R, Joubert O, Canilho N, Pasc A (2016) Core–shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin. Colloids Surf B 140:161–168

    Article  CAS  Google Scholar 

  • Kulkarni S, Maske K, Budre M, Mahajan R (2012) Extraction and purification of curcuminoids from Turmeric (Curcuma longa L.). Int J Pharmacol Pharm Technol 1(2):81–84

    Google Scholar 

  • Li K, Woo MW, Patel H, Selomulya C (2017) Enhancing the stability of protein-polysaccharides emulsions via Maillard reaction for better oil encapsulation in spray-dried powders by pH adjustment. Food Hydrocoll 69:121–131

    Article  CAS  Google Scholar 

  • Minemoto Y, Hakamata K, Adachi S, Matsuno R (2002) Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. J Microencapsul 19(2):181–189

    Article  CAS  Google Scholar 

  • Mondal S, Ghosh S, Moulik SP (2015) Colloidal dispersions of lipids and curcumin, and the solubility and degradation kinetics of the latter in micellar solution. Soft Mater 13(2):118–125

    Article  CAS  Google Scholar 

  • Mozafari MR (2006) Bioactive entrapment and targeting using nanocarrier technologies: an introduction. Nanocarrier technologies. Springer, New York, pp 1–16

    Google Scholar 

  • Murugesan R, Orsat V (2012) Spray drying for the production of nutraceutical ingredients—a review. Food Bioprocess Technol 5(1):3–14

    Article  Google Scholar 

  • Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin. J Med Chem 60(5):1620–1637

    Article  CAS  Google Scholar 

  • Pabon H (1964) A synthesis of curcumin and related compounds. Recl Trav Chim Pays Bas 83(4):379–386

    Article  CAS  Google Scholar 

  • Péret-Almeida L, Cherubino A, Alves R, Dufossé L, Glória M (2005) Separation and determination of the physic–chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Res Int 38(8–9):1039–1044

    Article  Google Scholar 

  • Pretzl M, Neubauer M, Tekaat M, Kunert C, Kuttner C, Leon GR, Berthier D, Erni P, Ouali L, Fery A (2012) Formation and mechanical characterization of aminoplast core/shell microcapsules. ACS Appl Mater Interfaces 4(6):2940–2948

    Article  CAS  Google Scholar 

  • Price LC, Buescher R (1997) Kinetics of alkaline degradation of the food pigments curcumin and curcuminoids. J Food Sci 62(2):267–269

    Article  CAS  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 26 Feb 2021

  • Rafiee Z, Nejatian M, Daeihamed M, Jafari SM (2019) Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 59(21):3468–3497

    Article  CAS  Google Scholar 

  • Rascón MP, Beristain CI, García HS, Salgado MA (2011) Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWT Food Sci Technol 44(2):549–557

    Article  Google Scholar 

  • Revathy S, Elumalai S, Antony MB (2011) Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. J Exp Sci 2(7):21–25

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18(1):529

    Article  Google Scholar 

  • Sarika P, James NR, Kumar PA, Raj DK, Kumary T (2015) Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohyd Polym 134:167–174

    Article  CAS  Google Scholar 

  • Shah PR, Gaitonde U, Ganesh A (2018) Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics. Renew Energy 115:685–696

    Article  CAS  Google Scholar 

  • Sharma R, Gescher A, Steward W (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968

    Article  CAS  Google Scholar 

  • Tan C, Xie J, Zhang X, Cai J, Xia S (2016) Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll 57:236–245

    Article  CAS  Google Scholar 

  • Tønnesen HH, Karlsen J, van Henegouwen GB (1986) Studies on curcumin and curcuminoids VIII. Photochemical stability of curcumin. Zeitschrift Für Lebensmittel Untersuchung Und Forschung 183(2):116–122

    Article  Google Scholar 

  • Wang Y-J, Pan M-H, Cheng A-L, Lin L-I, Ho Y-S, Hsieh C-Y, Lin J-K (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876

    Article  CAS  Google Scholar 

  • Wang Y, Lu Z, Lv F, Bie X (2009) Study on microencapsulation of curcumin pigments by spray drying. Eur Food Res Technol 229(3):391–396

    Article  CAS  Google Scholar 

  • Zorofchian MS, Abdul KH, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int. https://doi.org/10.1155/2014/186864

  • Zuanon LAC, Malacrida CR, Telis VRN (2013) Production of turmeric Oleoresin microcapsules by complex Coacervation with gelatin–gum A rabic. J Food Process Eng 36(3):364–373

    Article  CAS  Google Scholar 

  • Zuidam NJ, Nedovic V (2010) Encapsulation technologies for active food ingredients and food processing. Springer, New York. https://doi.org/10.1007/978-1-4419-1008-0

Download references

Acknowledgements

The authors gratefully acknowledge Ho Chi Minh City University of Technology and Education for the facility and equipment supports in completing this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Hoang Le.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Huynh, T.M., Nguyen, T.N.Q. et al. Enhancing the stability of synthesized curcumin by spray-drying microencapsulation with soy lecithin and gum Arabic. Braz. J. Chem. Eng. 38, 563–572 (2021). https://doi.org/10.1007/s43153-021-00124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00124-3

Keywords

Navigation