Skip to main content

Advertisement

Log in

Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Ionogels with high transparency, stretchability and self-healing capability show great potential for wearable electronics. Here, a kind of highly transparent, stretchable and self-healable ionogels are designed using double physical cross-linking including hydrogen bonding and dipole–dipole interaction. Owing to the dynamic and reversible nature of the ion–dipole interaction and hydrogen bonds of polymeric chains, the ionogel possesses good self-healing capability. The multifunctional sensors for strain and temperature are fabricated based on ionogel. The ionogel can serve as strain sensor that exhibited high sensitivity [gauge factor (GF) = 3.06] and durability (1000 cycles) to a wide range of strains (0–300%). Meanwhile, the ionogel shows rapid response to temperature, due to the temperature dependence of its ionic conductivity. Furthermore, the ionogel fibers with excellent antifreezing (− 20 °C) capability are fabricated, and the fibers show the good sensing performance to human motions and temperature. Importantly, the antifreezing ionogel-based triboelectric nanogenerator (ITENG) is assembled for efficient energy harvesting. The ITENG shows a short circuit current (ISC) of 6.1 μA, open circuit voltage (VOC) of 115 V, and instantaneous peak power density of 334 mW m−2. This work provides a new strategy to design ionogels for the advancement of wearable electronics.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tan YJ, Godaba H, Chen G, Tan STM, Wan G, Li G, Lee PM, Cai Y, Li S, Shepherd RF, Ho JS, Tee BCK. A transparent, self-healing and high-kappa dielectric for low-field-emission stretchable optoelectronics. Nat Mater. 2020;19:182–8.

    CAS  Google Scholar 

  2. Wang S, Oh JY, Xu J, Tran H, Bao Z. Skin-inspired electronics: an emerging paradigm. Acc Chem Res. 2018;51:1033–45.

    CAS  Google Scholar 

  3. Kang J, Tok JBH, Bao Z. Self-healing soft electronics. Nat Electron. 2019;2:144–50.

    Google Scholar 

  4. You I, Mackanic DG, Matsuhisa N, Kang J, Kwon J, Beker L, Mun J, Suh W, Kim TY, Tok JBH, Bao Z, Jeong U. Artificial multimodal receptors based on ion relaxation dynamics. Science. 2020;370:961–5.

    CAS  Google Scholar 

  5. Cao Z, Liu H, Jiang L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater Horiz. 2020;7:912–8.

    CAS  Google Scholar 

  6. Pan S, Liu Z, Wang M, Jiang Y, Luo Y, Wan C, Qi D, Wang C, Ge X, Chen X. Mechanocombinatorially screening sensitivity of stretchable strain sensors. Adv Mater. 2019;31:e1903130.

    Google Scholar 

  7. Pan S, Zhang F, Cai P, Wang M, He K, Luo Y, Li Z, Chen G, Ji S, Liu Z, Loh XJ, Chen X. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv Funct Mater. 2020;30:1909540.

    CAS  Google Scholar 

  8. Park S, Parida K, Lee PS. Deformable and transparent ionic and electronic conductors for soft energy devices. Adv Energy Mater. 2017;7:1701369.

    Google Scholar 

  9. Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv. 2017;3:e1700015.

    Google Scholar 

  10. Qu X, Niu W, Wang R, Li Z, Guo Y, Liu X, Sun J. Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Mater Horiz. 2020;7:2994–3004.

    CAS  Google Scholar 

  11. Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L, Yan F. Ionic liquid–based click-ionogels. Sci Adv. 2019;5:eaax0648.

    CAS  Google Scholar 

  12. Sun JY, Keplinger C, Whitesides GM, Suo Z. Ionic skin. Adv Mater. 2014;26:7608–14.

    CAS  Google Scholar 

  13. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater. 2018;3:125–42.

    CAS  Google Scholar 

  14. Zhang X, Sheng N, Wang L, Tan Y, Liu C, Xia Y, Nie Z, Sui K. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater Horiz. 2019;6:326–33.

    CAS  Google Scholar 

  15. Lei Z, Wu P. Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems. Mater Horiz. 2019;6:538–45.

    CAS  Google Scholar 

  16. Kim YS, Liu M, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M, Aida T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat Mater. 2015;14:1002–7.

    CAS  Google Scholar 

  17. Lee Y, Cha SH, Kim YW, Choi D, Sun JY. Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat Commun. 2018;9:1804.

    Google Scholar 

  18. Zhang LM, He Y, Cheng S, Sheng H, Dai K, Zheng WJ, Wang MX, Chen ZS, Chen YM, Suo Z. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small. 2019;15:1804651.

    Google Scholar 

  19. Bai Y, Chen B, Xiang F, Zhou J, Wang H, Suo Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl Phys Lett. 2014;105:151903.

    Google Scholar 

  20. Sun J, Lu G, Zhou J, Yuan Y, Zhu X, Nie J. Robust physically linked double-network ionogel as a flexible bimodal sensor. ACS Appl Mater Interfaces. 2020;12:14272–9.

    CAS  Google Scholar 

  21. Kim HJ, Chen B, Suo Z, Hayward RC. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science. 2020;367:773–6.

    CAS  Google Scholar 

  22. Ding Y, Zhang J, Chang L, Zhang X, Liu H, Jiang L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater. 2017;29:1704253.

    Google Scholar 

  23. Li T, Wang Y, Li S, Liu X, Sun J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater. 2020;32:e2002706.

    Google Scholar 

  24. Zhang L, Jiang D, Dong T, Das R, Pan D, Sun C, Wu Z, Zhang Q, Liu C, Guo Z. Overview of ionogels in flexible electronics. Chem Rec. 2020;20:948–67.

    CAS  Google Scholar 

  25. Zhou F, Huang H, Xiao C, Zheng S, Shi X, Qin J, Fu Q, Bao X, Feng X, Mullen K, Wu ZS. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J Am Chem Soc. 2018;140:8198–205.

    CAS  Google Scholar 

  26. Sun L, Chen S, Guo Y, Song J, Zhang L, Xiao L, Guan Q, You Z. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy. 2019;63:103847.

    CAS  Google Scholar 

  27. Weng D, Xu F, Li X, Li S, Li Y, Sun J. Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors. ACS Appl Mater Interfaces. 2020;12:57477–85.

    CAS  Google Scholar 

  28. Li Z, Wang J, Hu R, Lv C, Zheng J. A highly ionic conductive, healable, and adhesive polysiloxane-supported ionogel. Macromol Rapid Commun. 2019;40:1800776.

    Google Scholar 

  29. Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, Watanabe M. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater. 2018;30:e1802792.

    Google Scholar 

  30. Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, Xu J, Kurosawa T, Gu X, Wang C, He M, Chung JW, Bao Z. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc. 2016;138:6020–7.

    CAS  Google Scholar 

  31. Li C-H, Wang C, Keplinger C, Zuo J-L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X-Z, Bao Z. A highly stretchable autonomous self-healing elastomer. Nat Chem. 2016;8:618–24.

    CAS  Google Scholar 

  32. Pena-Francesch A, Jung H, Demirel MC, Sitti M. Biosynthetic self-healing materials for soft machines. Nat Mater. 2020;19:1230–5.

    CAS  Google Scholar 

  33. Trivedi TJ, Bhattacharjya D, Yu JS, Kumar A. Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem. 2015;8:3294–303.

    CAS  Google Scholar 

  34. Cao Y, Morrissey TG, Acome E, Allec SI, Wong BM, Keplinger C, Wang C. A transparent, self-healing, highly stretchable ionic conductor. Adv Mater. 2017;29:1605099.

    Google Scholar 

  35. Cao Y, Tan YJ, Li S, Lee WW, Guo H, Cai Y, Wang C, Tee BCK. Self-healing electronic skins for aquatic environments. Nat Electron. 2019;2:75–82.

    Google Scholar 

  36. Fan F-R, Tian Z-Q, Lin WZ. Flexible triboelectric generator. Nano Energy. 2012;1:328–34.

    CAS  Google Scholar 

  37. Wen Z, Yang Y, Sun N, Li G, Liu Y, Chen C, Shi J, Xie L, Jiang H, Bao D, Zhuo Q, Sun X. A wrinkled pedot: Pss film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv Funct Mater. 2018;28:1803684.

    Google Scholar 

  38. Gong W, Hou C, Guo Y, Zhou J, Mu J, Li Y, Zhang Q, Wang H. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy. 2017;39:673–83.

    CAS  Google Scholar 

  39. Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang ZL. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy. 2019;59:302–10.

    CAS  Google Scholar 

  40. Ye C, Xu Q, Ren J, Ling S. Violin string inspired core-sheath silk/steel yarns for wearable triboelectric nanogenerator applications. Adv Fiber Mater. 2020;2:24–33.

    CAS  Google Scholar 

  41. Kim YM, Moon HC. Ionoskins: nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics. Adv Funct Mater. 2019;30:1907290.

    Google Scholar 

  42. Sun J, Yuan Y, Lu G, Li L, Zhu X, Nie J. A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. J Mater Chem C. 2019;7:11244–50.

    CAS  Google Scholar 

  43. Cai Y, Shen J, Yang C-W, Wan Y, Tang H-L, Aljarb AA, Chen C, Fu J-H, Wei X, Huang K-W, Han Y, Jonas SJ, Dong X, Tung V. Mixed-dimensional mxene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci Adv. 2020;6:eabb5367.

    CAS  Google Scholar 

  44. Song J, Chen S, Sun L, Guo Y, Zhang L, Wang S, Xuan H, Guan Q, You Z. Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater. 2020;32:e1906994.

    Google Scholar 

  45. Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys. 2008;41:223001.

    Google Scholar 

  46. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3–31.

    Google Scholar 

  47. Chen M, Wang Z, Li K, Wang X, Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater. 2021;3:1–13.

    Google Scholar 

  48. Sun H, Zhao Y, Jiao S, Wang C, Jia Y, Dai K, Zheng G, Liu C, Wan P, Shen C. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202101696.

    Article  Google Scholar 

  49. Bao D, Wen Z, Shi J, Xie L, Jiang H, Jiang J, Yang Y, Liao W, Sun X. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J Mater Chem A. 2020;8:13787–94.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21991123 and 52073049), the Natural Science Foundation of Shanghai (20ZR1402500 and 18ZR1401900), Shanghai Rising-Star Program (20520741000), Belt & Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai (20520741000), the Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University) (18520750400), the Fundamental Research Funds for the Central Universities (2232021G-02), DHU Distinguished Young Professor Program (LZA2019001), and the Science and Technology Commission of Shanghai (17DZ2260100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbao Guan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Huang, H., Ding, Q. et al. Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Adv. Fiber Mater. 4, 98–107 (2022). https://doi.org/10.1007/s42765-021-00086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00086-8

Keywords

Navigation