Skip to main content
Log in

Aeroelastic stability analysis of a flexible panel subjected to an oblique shock based on an analytical model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

For a deeper understanding of the physical phenomenology of shock-induced panel flutter, a theoretical model for analyzing aeroelastic stability of flexible panels subjected to an oblique shock has been developed. The von Kármán large deflection plate theory is used to account for the geometrical nonlinearity, and local first-order piston theory is employed to predict unsteady aerodynamic loading in shock-dominated flows. In order to consider the nonuniform static pressure differentials induced by the shock, we regard the final total displacement of the panel as the superposition of static deformation and dynamic displacement, which is in accord with the actual situation of physicality. The static deformation is obtained by solving the static aeroelastic equation, and then it is introduced into the dynamic aeroelastic equations in the form of the stiffness by the nonlinear induced loading. According to Lyapunov indirect method and the Routh–Hurwitz criterion, a theoretical solution for the aeroelastic stability boundaries of the flexible panel subjected to an oblique shock is derived. The results show that the presence of an impinging shock wave is found to produce panel flutter that is characteristically different from that with the shock-free condition. For a complex aeroelastic system in shock-dominated flows, there exists a game between the static pressure differential and the unsteady dynamic pressure. When the dynamic pressure gains the upper hand, the presence of shock reduces the aeroelastic stability of the panel. In contrast, when the static pressure difference has the upper hand, the presence of shock will enhance stability of the panel. The dimensionless aerodynamic parameter, which is the ratio of the non-dimensional static pressure to the non-dimensional dynamic pressure of the incoming flow, plays a significant role in aeroelastic stability of panels in shock-dominated flows. For different dimensionless aerodynamic parameters, the flutter boundaries will present different characteristics. As this dimensionless aerodynamic parameter increases, the non-dimensional critical flutter dynamic pressure will increase monotonously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(a\) :

Speed of sound

\(a_{\infty }\) :

Free stream sound velocity

\(D\) :

Plate stiffness

\(E\) :

Elasticity modulus

\(h\) :

Plate thickness

\(l\) :

Plate length

\({\text{Ma}}\) :

Mach number

\(M_{{\text{R}}}\) :

Dimensionless aerodynamic parameter

\(N\) :

Mode number

\(N_{x}\) :

In-plane force

\(q = \rho _{\infty } U_{\infty }^{2} /2\) :

Dynamic pressure

\(R_{x}\) :

Non-dimensional in-plane force

\(t\) :

Physical time

\(U\) :

Flow velocity

\(W\) :

Non-dimensional plate delection

\(W_{{\text{S}}}\) :

Non-dimensional static deformation

\(W_{{\text{D}}}\) :

Non-dimensional dynamic displacement

\(w\) :

Plate deflection

\(x\) :

Streamwise coordinate

\(\gamma\) :

Air specific heat ratio

\(\lambda\) :

Non-dimensional dynamic pressure, \(2ql^{3} /{\text{Ma}}D\)

\(\upsilon\) :

Poisson’s ratio

\(\rho _{{\text{m}}}\) :

Density of plate

\(\rho\) :

Air density

\(\rho _{\infty } ,U_{\infty } ,p_{\infty } ,M_{\infty }\) :

Free stream air density, velocity, pressure, Mach number

\(\sigma\) :

Shock angle

u:

Upper surface of the panel

d:

Lower surface of the panel

l:

Left side of the shock

r:

Right side of the shock

loc:

Local condition

References

  1. Dowell, E.H.: Nonlinear oscillations of a fluttering plate. AIAA J. 4(7), 1267–1275 (1966). https://doi.org/10.2514/3.3658

    Article  Google Scholar 

  2. Dowell, E.H.: Nonlinear oscillations of a fluttering plate. II. AIAA J. 5(10), 1856–1862 (1967). https://doi.org/10.2514/3.4316

    Article  Google Scholar 

  3. Wang, X.C., Yang, Z.C., Chen, Z.L., Gu, Y.S., Wang, W.Q., Zhao, Y., Wang, Y.M.: Study on coupled modes panel flutter stability using an energy method. J. Sound Vib. 468, 1–16 (2020). https://doi.org/10.1016/j.jsv.2019.115051

    Article  Google Scholar 

  4. Aditya, S., Haboussi, M., Shubhendu, S., Ganapathi, M., Polit, O.: Supersonic flutter study of porous 2D curved panels reinforced with graphene platelets using an accurate shear deformation finite element procedure. Compos. Struct. 241, 1–11 (2020). https://doi.org/10.1016/j.compstruct.2020.112058

    Article  Google Scholar 

  5. Muc, A., Flis, J.: Free vibrations and supersonic flutter of multilayered laminated cylindrical panels. Compos. Struct. 246, 1–10 (2020). https://doi.org/10.1016/j.compstruct.2020.112400

    Article  Google Scholar 

  6. Chai, Y.Y., Li, F.M., Song, Z.G., Zhang, C.Z.: Influence of the boundary relaxation on the flutter and thermal buckling of composite laminated panels. Aerosp. Sci. Technol. 104, 1–17 (2020). https://doi.org/10.1016/j.ast.2020.106000

    Article  Google Scholar 

  7. Ganapathi, M., Aditya, S., Shubhendu, S., Polit, O., Zineb, T.B.: Nonlinear supersonic flutter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable finite element. Int. J. Non Linear Mech. 125, 1–17 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103543

    Article  Google Scholar 

  8. Zhou, R.C., Lai, Z.H., Xue, D.Y., Huang, J.K., Mei, C.: Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method. AIAA J. 33(6), 1098–1105 (1995). https://doi.org/10.2514/3.12530

    Article  MATH  Google Scholar 

  9. Dowell, E.H.: Panel flutter: a review of the aeroelastic stability of plates and shells. AIAA J. 8(3), 385–399 (1970)

    Article  Google Scholar 

  10. Mei, C., Abel-Motagaly, K., Chen, R.: Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl. Mech. Rev. 52(10), 321–332 (1999). https://doi.org/10.1115/1.3098919

    Article  Google Scholar 

  11. Cheng, G.F., Mei, C.: Finite element modal formulation for hypersonic panel flutter analysis with thermal effects. AIAA J. 42(4), 687–695 (2004). https://doi.org/10.2514/1.9553

    Article  Google Scholar 

  12. Zhou, R.C., Xue, D.Y., Mei, C.: Finite element time domain-modal formulation for nonlinear flutter of composite panels. AIAA J. 32(10), 2044–2052 (1994). https://doi.org/10.2514/3.12250

    Article  MATH  Google Scholar 

  13. Vedeneev, V.V.: Panel flutter at low supersonic speeds. J. Fluids Struct. 29, 79–96 (2012). https://doi.org/10.1016/j.jfluidstructs.2011.12.011

    Article  Google Scholar 

  14. Shishaeva, A., Vedeneev, V., Aksenov, A.: Nonlinear single-mode and multi-mode panel flutter oscillations at low supersonic speeds. J. Fluids Struct. 56, 205–223 (2015). https://doi.org/10.1016/j.jfluidstructs.2015.05.005

    Article  Google Scholar 

  15. Gordnier, R.E., Visbal, M.R.: Development of a three-dimensional viscous aeroelastic solver for nonlinear panel flutter. J. Fluids Struct. 16(4), 497–527 (2002). https://doi.org/10.1006/jfls.2000.0434

    Article  Google Scholar 

  16. Koo, K.N., Hwang, W.S.: Effects of hysteretic and aerodynamic damping on supersonic panel flutter of composite plates. J. Sound Vib. 273(3), 569–583 (2004). https://doi.org/10.1016/S0022-460X(03)00514-5

    Article  Google Scholar 

  17. Sun, Q.Z., Xing, Y.F.: Exact eigensolutions for flutter of two-dimensional symmetric cross-ply composite laminates at high supersonic speeds. Compos. Struct. 183, 358–370 (2018). https://doi.org/10.1016/j.compstruct.2017.03.085

    Article  Google Scholar 

  18. Nydick, I., Friedmann, P.P., Zhong, X.: Hypersonic panel flutter studies on curved panels. In: AIAA 36th Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, pp. 2995–3011 (1995)

  19. Bolotin, V.V., Petrovsky, A.V.: Secondary bifurcation and global instability of an aeroelastic non-linear system in the divergence domain. J. Sound Vib. 191(3), 431–451 (1996). https://doi.org/10.1006/jsvi.1996.0132

    Article  Google Scholar 

  20. Xie, D., Xu, M., Dowell, E.H.: Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations. AIAA J. 52(2), 229–241 (2014). https://doi.org/10.2514/1.J051989

    Article  Google Scholar 

  21. Pourtakdoust, S.H., Fazelzadeh, S.A.: Chaotic analysis of nonlinear viscoelastic panel flutter in supersonic flow. Nonlinear Dyn. 32, 387–404 (2003). https://doi.org/10.1023/A:1025616916033

    Article  MATH  Google Scholar 

  22. Shiryayev, O.V., Slater, J.C.: Aeroelastic system identification using the minimum model error method. J. Guid. Control. Dyn. 29(4), 936–943 (2006). https://doi.org/10.2514/1.14966

    Article  Google Scholar 

  23. Xia, W., Yang, Z.C.: Stability analysis of heated panel in supersonic flows. Chin. J. Theor. Appl. Mech. 39(5), 602–609 (2007). (in Chinese)

    Google Scholar 

  24. Zhou, J., Yang, Z.C., Gu, Y.S.: Aeroelastic stability analysis of heated panel with aerodynamic loading on both surface. Sci. China Technol. Sci. 55(10), 2720–2726 (2012). https://doi.org/10.1007/s11431-012-4942-2

    Article  Google Scholar 

  25. Wang, X.C., Yang, Z.C., Wang, W., Tian, W.: Nonlinear viscoelastic heated panel flutter with aerodynamic loading exerted on both surfaces. J. Sound Vib. 409, 306–317 (2017). https://doi.org/10.1016/j.jsv.2017.07.033

    Article  Google Scholar 

  26. Ye, L.Q., Ye, Z.Y.: Aeroelastic stability and nonlinear flutter analysis of heated panel with temperature-dependent material properties. J. Aerosp. Eng. 33(6), 1–17 (2020). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001173

    Article  Google Scholar 

  27. Ye, L.Q., Ye, Z.Y.: Theoretical analysis for the effect of static pressure differential on aeroelastic stability of flexible panel. Aerosp. Sci. Technol. 109, 1–18 (2021). https://doi.org/10.1016/j.ast.2020.106428

    Article  Google Scholar 

  28. Zuchowski, B.: Predictive Capability for Hypersonic Structural Response and Life Prediction, Phase II Detailed Design of Hypersonic Cruise Vehicle Hot-Structure. Tech. Rept. RQ-WP-TR-2012-0280, Air Force Research Lab., Air Force Material Command, Wright-Patterson Air Force Base (2012)

  29. Spottswood, S.M., Eason, T.G., Beberniss, T.: Full-Field Dynamic Pressure and Displacement Measurements of a Panel Excited by Shock Boundary-Layer Interaction. AIAA Paper 2013–2016 (2013)

  30. Daub, D., Willems, S., Gülhan, A.: Experiments on the interaction of a fast-moving shock with an elastic panel. AIAA J. 54(2), 670–678 (2015). https://doi.org/10.2514/1.J054233

    Article  Google Scholar 

  31. Spottswood, S.M., Beberniss, T.J., Eason, T.G., Perez, R.A., Donbar, J.M., Ehrhardt, D.A., Riley, Z.B.: Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interactions. J. Sound Vib. 443, 74–89 (2019). https://doi.org/10.1016/j.jsv.2018.11.035

    Article  Google Scholar 

  32. Visbal, M.R.: On the interaction of an oblique shock with a flexible panel. J. Fluids Struct. 30, 219–225 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.02.002

    Article  Google Scholar 

  33. Visbal, M.R.: Viscous and inviscid interactions of an oblique shock with a flexible panel. J. Fluids Struct. 48, 27–45 (2014). https://doi.org/10.1016/j.jfluidstructs.2014.02.003

    Article  Google Scholar 

  34. Shinde, V., McNamara, J.J., Gaitonde, D.V., Barnes, C.J., Visbal, M.R.: Panel flutter induced by transitional shock wave boundary layer interaction. AIAA Paper 2018-3548 (2018)

  35. Spottswood, S.M., Eason, T., Beberniss, T.: Influence of shock-boundary layer interactions on the dynamic response of a flexible panel. In: Proceedings of International Conference on Noise and Vibration Engineering, pp. 603–616. ISMA (2012)

  36. Ye, L., Ye, Z.: Effects of shock location on aeroelastic stability of flexible panel. AIAA J. 56(9), 3732–3744 (2018). https://doi.org/10.2514/1.J056924

    Article  Google Scholar 

  37. Ye, L., Ye, Z., Wang, X.: Aeroelastic stability analysis of heated flexible panel subjected to an oblique shock. Chin. J. Aeronaut. 31(8), 1650–1666 (2018). https://doi.org/10.1016/j.cja.2018.05.019

    Article  Google Scholar 

  38. Zhou, R.C., Mei, C., Huang, J.K.: Suppression of nonlinear panel flutter at supersonic speeds and elevated temperatures. AIAA J. 34(2), 347–354 (1996). https://doi.org/10.2514/3.13070

    Article  MATH  Google Scholar 

  39. Brouwer, K.R., Crowell, A.R., McNamara, J.J.: Rapid prediction of unsteady aeroelastic loads in shock-dominated flows. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2015-0687, Jan. 2015

  40. Brouwer, K.R., McNamara, J.J.: Rapid modeling of aeroelastic loads in the presence of shock impingements. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, AIAA Paper 2018-1448, Jan. 2018

  41. Miller, B.A., Crowell, A.R., Deshmukh, R., Gogulapati, A., McNamara, J.J., Vyas, V., Wang, X.Q., Mignolet, M.P.: Response of a panel to shock impingement: modeling and comparison with experiments. In: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2014-0148, Jan. 2014

  42. Morgan, H.G., Runyan, H.L., Huckel, V.: Theoretical considerations of flutter at high Mach numbers. J. Aerosp. Sci. 25(6), 371–381 (1958). https://doi.org/10.2514/8.7688

    Article  MATH  Google Scholar 

  43. Zhang, W.-W., Ye, Z.-Y., Zhang, C.-A., Liu, F.: Supersonic flutter analysis based on a local piston theory. AIAA J. 47(10), 2321–2328 (2009). https://doi.org/10.2514/1.37750

    Article  Google Scholar 

  44. Meijer, M.C., Dala, L.: Generalized formulation and review of piston theory for airfoils. AIAA J. 54(1), 17–27 (2016). https://doi.org/10.2514/1.J054090

    Article  Google Scholar 

  45. Eastep, F.E., McIntosh, S.C., Jr.: Analysis of nonlinear panel flutter and response under random excitation or nonlinear aerodynamic loading. AIAA J. 9(3), 411–418 (1971). https://doi.org/10.2514/3.6195

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 11732013) and the Project (NNW2019ZT3-A15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyin Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Ye, Z., Ye, K. et al. Aeroelastic stability analysis of a flexible panel subjected to an oblique shock based on an analytical model. Acta Mech 232, 3539–3564 (2021). https://doi.org/10.1007/s00707-021-03023-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03023-3

Navigation