Skip to main content
Log in

An impact of Jacques Raynal on nuclear data evaluation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Jacques Raynal seminal contributions to the optical model development and numerical implementation of the solution of coupled-channel equations have been key to generate nuclear data for applications in the last three decades. We recall some of the interactions we had with Jacques from late nineties up until his death. His ECIS code was for a long time, since his collaboration with Peter Moldauer in early eighties, the only optical model and compound decay code where Engelbrecht–Weidenmüller transformation was implemented to consider the impact of strongly coupled channels with large direct inelastic cross sections on the decay of the compound channel. Such physical effect, which was neglected for a long time, proved very important to describe the observed enhancement (Relative to the bare Hauser–Feschbach calculation) of the inelastic scattering cross section on \(^{238}\)U nucleus, which is a major fuel component in nuclear power reactors. Jacques also proposed an unique and very clever method to calculate dispersive integrals analytically in 1996. His excellent mathematical background and programming skills set a very high bar for future generations. This contribution represents a small homage to our dear colleague and friend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

Notes

  1. ECIS versions till ECIS94 are briefly described in https://ribf.riken.jp/~gibelin/ec94/node4.html.

  2. Raynal made special efforts to include Moldauer’s developments [5,6,7] into his ECIS code following Moldauer untimely death during the ICTP Trieste workshop on 27 January 1984.

  3. Today, we routinely couple more than 20 levels on \(7/2^-\) ground state of the \(^{235}\)U target and get the results in less than one hour on a laptop computer. This was unthinkable 30 years ago.

  4. Ou simplement “ les Mines,” et plus récemment de MINES ParisTech.

  5. Jacques and Claudette travel almost everywhere together.

  6. See more information on EMPIRE collaboration at https://nds.iaea.org/empire/.

  7. See the RIPL optical model interface “Code for Retrieving Optical Model Potentials” available online at https://nds.iaea.org/RIPL-3/.

  8. By an extremely sad coincidence, our much appreciated collaborator Dr. Efrem Sh. Soukhovitskii also passed away very recently.

  9. A very sensitive experimental quantity to small differences in the calculated optical model cross sections of neighbor nuclei.

  10. Adopted for the ENDF/B-VIII.0 library [58].

References

  1. A. Hill, D. Edens, INCH code, Oxford (1967), unpublished

  2. J. Raynal, “Optical-model and coupled-channel calculations in nuclear physics (IAEA-SMR-9/8),” in “Computing as a Language of Physics”, report STI/PUB/306, International Atomic Energy Agency, Vienna, Austria, 1972, pp. 281–322. Lectures presented at an International Seminar Course, Trieste, 2–20, Organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP) (Trieste, ECIS Code Distributed by the NEA DATA Bank (OECD, Paris), August 1971)

  3. J. Raynal, “ Spin-orbit interaction in the inelastic nucleon scattering (IAEA-SMR-8/8),” in “ The structure of nuclei”, report STI/PUB/305, International Atomic Energy Agency, Vienna, Austria, 1972, pp.75–116. Lectures presented at an International Course on Nuclear Theory, Trieste, 13 January - 12 March 1971, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste

  4. J. Raynal, H. Sherif, Proc. Sixth International Symp. on polarization phenomena in nuclear physics, Osaka, Japan, 1985, J. Phys. Soc. Jpn. Suppl. 55, 922 (1986)

  5. P.A. Moldauer, Why the Hauser–Feshbach formula works. Phys. Rev. C 11, 426 (1975)

    Article  ADS  Google Scholar 

  6. P.A. Moldauer, Direct reaction effects on compound cross sections. Phys. Rev. C 12, 744 (1975)

    Article  ADS  Google Scholar 

  7. P.A. Moldauer, in “ Nuclear Theory for Applications 1980,” report IAEA-SMR-68, Proceedings of the interregional Advanced Training Course on Applications of Nuclear Theory to Nuclear Data for Calculations for Reactor Design held at Trieste, 28 January-22 February 1980, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste

  8. J. Raynal, “ Coupled channel calculations and computer code ECIS,” Lectures presented at the Workshop on applied nuclear theory and nuclear model calculations, 15 February - 18 March 1988, organized by the International Atomic Energy Agency (IAEA) and the International Centre for Theoretical Physics (ICTP), Trieste

  9. M.W. Herman, R. Capote, B.V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655–2715 (2007)

    Article  ADS  Google Scholar 

  10. A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 113, 2841–2934 (2012)

    Article  ADS  Google Scholar 

  11. R. Cabezas, S.P. Ivanova, Influence of the nuclear potential deformation on the compound nuclesu cross section. Nucleus 5, 3 (1988)

    Google Scholar 

  12. T. Tamura, Analyses of the scattering of nuclear particles by collective nuclei in terms of the coupled-channel calculation. Rev. Mod. Phys. 37, 679–708 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Tamura, Oak Ridge Natioal Laboratory report ORNL-4152 (1967)

  14. C. Mahaux, H. Ngô, G.R. Satchler, Causality and the threshold anomaly of the nucleus–nucleus potential. Nucl. Phys. A 449, 354 (1986)

    Article  ADS  Google Scholar 

  15. C. Mahaux, R. Sartor, Calculation of the shell-model potential from the optical-model potential. Phys. Rev. Lett. 57, 3015 (1986)

    Article  ADS  Google Scholar 

  16. T. Kawano, “ Program CoH”

  17. M. Herman, R. Capote Noy, P. Obložinský, A. Trkov, V. Zerkin, “ Recent development and validation of the nuclear reaction code EMPIRE,” J. Nucl. Sci. Techn. Suppl.2, pp.116–119 (2002)

  18. R. Capote, A. Molina, J. M. Quesada, “ A general numerical solution of dispersion relations for the nuclear optical model,” J. Phys.G: Nucl. Part. Phys. 27, B15 (2001)

  19. A. Molina, R. Capote, J.M. Quesada, M. Lozano, Dispersive spherical optical model of neutron scattering from \(^{27}\)Al up to 250 MeV. Phys. Rev. C 65, 034616 (2002). https://doi.org/10.1103/PhysRevC.65.034616

  20. J. Raynal, “ ECIS96,” Specialist’ meeting on the nucleon nucleus optical model up to 200 MeV, Bruyéres-le-Châtel (France), 13–15 November 1996

  21. A. Molina, R. Capote, A. Molina, M. Lozano, Dispersion relations in the nuclear optical model. Comp. Phys. Comm. 153, 97–105 (2003). https://doi.org/10.1016/S0010-4655(03)00157-7

  22. J.M. Quesada, R. Capote, A. Molina, M. Lozano, J. Raynal, Analytical expressions for the dispersive contributions to the nucleon–nucleus optical potential. Phys. Rev. C 67, 067601 (2003). https://doi.org/10.1103/PhysRevC.67.067601

  23. R. Capote, M.W. Herman, P. Obložinský et al., “ RIPL–Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluations,” Nucl. Data Sheets 110, 3107–3214 (2009) (see https://www-nds.iaea.org/RIPL-3)

  24. J.M. Quesada, R. Capote, E. Sh, Soukhovitskiĩ, S. Chiba, Approximate Lane consistency of the dispersive coupled-channels potential for actinides. Phys. Rev. C 76, 057602 (2007). https://doi.org/10.1103/PhysRevC.76.057602

  25. I. Thompson, FRESCO – Coupled Reaction Channels Calculations. Code and documentation available at www.fresco.org.uk

  26. E. Sh. Soukhovitskii, S. Chiba, J.-Y. Lee, O. Iwamoto, and T. Fukahori, “ Global coupled-channel potential for nucleon-actinide interaction from 1 keV to 200 MeV”, J. Phys. G: Nucl. Part. Phys. 30, 905–920 (2004), RIPL 2601 potential

  27. E. Sh. Soukhovitskiĩ, G.B. Morogovskiĩ, S. Chiba, O. Iwamoto, T. Fukahori. “ Physics and numerical methods of OPTMAN: a coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitation.” Technical report JAERI-Data/Code 2004-002, Japan Atomic Energy Research Institute (2004)

  28. E. Sh. Soukhovitskiĩ, S. Chiba, O. Iwamoto, K. Shibata, T. Fukahori, G.B. Morogovskiĩ, “ Programs OPTMAN and SHEMMAN Version 8,” Technical report JAERI-Data/Code 2005-002, Japan Atomic Energy Research Institute (2005)

  29. E.Sh. Soukhovitskiĩ, S. Chiba, R. Capote, J.M. Quesada, S. Kunieda, G.B. Morogovskiĩ, Technical Report JAERI-Data/Code 2008-025, Japan Atomic Energy Research Institute (2008)

  30. ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, Dispersive coupled-channel analysis of nucleon scattering from \(^{232}\)Th up to 200 MeV. Phys. Rev. C 72, 024604 (2005). https://doi.org/10.1103/PhysRevC.72.024604

  31. R. Capote, ESh Soukhovitskiĩ, J.M. Quesada, S. Chiba, Is a global coupled-channel dispersive optical model potential for actinides feasible?”. Phys. Rev. C 72, 064610 (2005). https://doi.org/10.1103/PhysRevC.72.064610

  32. A.M. Lane, Phys. Rev. Lett. 8, 171 (1962)

    Article  ADS  Google Scholar 

  33. A.M. Lane, Nucl. Phys. 35, 676 (1962)

    Article  Google Scholar 

  34. R. Capote, S. Chiba, ESh Soukhovitskiĩ, J.M. Quesada, E. Bauge, A global dispersive coupled-channel optical model potential for actinides. J. Nucl. Sci. Tech. 45, 333–340 (2008). https://doi.org/10.1080/18811248.2008.9711442

  35. ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, D.S. Martyanov, Nucleon scattering on actinides using a dispersive optical model with extended couplings. Phys. Rev. C 94, 064605 (2016)

    Article  ADS  Google Scholar 

  36. E. Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, D. S. Martyanov, “ Erratum: Nucleon scattering on actinides using a dispersive optical model with extended couplings, [Phys. Rev. C 94, 064605 (2016)],” Phys. Rev. C102, 059901(E) (2020)

  37. D.S. Martyanov, ESh Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, Multiband coupling and nculear softness in optical model calculations for even–even and odd-A actinides. EPJ Web Conf. 239, 03003 (2020)

    Article  Google Scholar 

  38. N. T. Okumusoglu, F. Korkmaz Gorur, J. Birchall, E.Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, “ Angular distributions of protons scattered by \(^{40}\)Ar nuclei with excitation of the \(2^+\) (1.46 MeV) and \(3^-\) (3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV,” Phys. Rev. C75, 034616 (2007)

  39. E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Sov. J. Nucl. Phys. 54, 570 (1991)

  40. E. Sh, Sukhovitskiĩ, Yu.V. Porodzinskiĩ, Phys. Atom. Nucl. 59, 228 (1996)

  41. J.-Y. Lee, ESh Soukhovitskiĩ, Y. Kim, R. Capote, S. Chiba, J.M. Quesada, Self-consistent analyses of nuclear level structures, and nucleon interaction data of even–even sn isotopes. J. Kor. Phys. Soc. 59(2), 1019–1022 (2011)

    Article  ADS  Google Scholar 

  42. R. Li, W. Sun, ESh Soukhovitskiĩ, J.M. Quesada, R. Capote, Dispersive coupled-channels optical-model potential with soft-rotator couplings for Cr, Fe, and Ni isotopes. Phys. Rev. C 87, 054611 (2013). https://doi.org/10.1103/PhysRevC.87.054611

  43. X. Zhao, W. Sun, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, R. Capote, Analysis of neutron bound states of \(^{208}\)Pb by a dispersive optical model potential. J. Phys. G. 46, 055103 (2019). https://doi.org/10.1088/1361-6471/ab0010

  44. X. Zhao, W. Sun, R. Capote, ESh Soukhovitskiĩ, D.S. Martyanov, J.M. Quesada, Dispersive optical model description of nucleon scattering on Pb and Bi isotopes. Phys. Rev. C 101, 064618 (2020). https://doi.org/10.1103/PhysRevC.101.064618

  45. T. Kawano, P. Talou, H.A. Weidenmüller, Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo technique. Phys. Rev. C 92, 044617 (2015)

    Article  ADS  Google Scholar 

  46. T. Kawano, R. Capote, S. Hilaire, P. Chau Huu-Tai, “ Statistical Hauser–Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies,” Phys. Rev. C94, 014612 (2016). https://doi.org/10.1103/PhysRevC.94.014612

  47. C.A. Engelbrecht, H.A. Weidenmüller, Hauser–Feshbach theory and Ericson fluctuations in the presence of direct reactions. Phys. Rev. C 8, 859 (1973)

    Article  ADS  Google Scholar 

  48. R. Capote, A. Trkov et al., Elastic and inelastic scattering of neutrons on \(^{238}\)U nucleus. EPJ Web Conf. 69, 00008 (2014)

    Article  Google Scholar 

  49. R. Capote, A. Trkov, M. Sin, M. Herman, A. Daskalakis, Y. Danon, Physics of neutron interactions with \(^{238}\)U: new developments and challenges. Nucl. Data Sheets 118, 26–31 (2014)

    Article  ADS  Google Scholar 

  50. R. Capote, M. Sin, A. Trkov, M. W. Herman, D. Bernard, G. Noguere, A. Daskalakis, Y. Danon, “ Evaluation of neutron induced reactions on U-238 nucleus,” Proc. NEMEA-7 Workshop NEA/NSC/DOC(2014)13, NEA, OECD (2014)

  51. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  52. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko et al., “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC),” Nucl. Data Sheets 120, 272–276 (2014). Data available online (e.g., at https://www-nds.iaea.org/exfor/)

  53. J.M. Quesada, E.Sh. Soukhovitskiĩ, R. Capote, S. Chiba, “ A dispersive optical model potential for nucleon induced reactions on \(^{238}\)U and \(^{232}\)Th nuclei with full coupling,” EPJ Web of Conf. 42, 02005 (2013), WONDER2012 proceedings

  54. J.M. Quesada, R. Capote, ESh Soukhovitskiĩ, S. Chiba, Rotational-vibrational description of nucleon scattering on actinide nuclei using a dispersive coupled-channel optical model. Nucl. Data Sheets 118, 270–272 (2014)

    Article  ADS  Google Scholar 

  55. M.B. Chadwick, R. Capote, A. Trkov et al., CIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen. Nucl. Data Sheets 148, 189–213 (2018)

    Article  ADS  Google Scholar 

  56. M. Fleming, M.B. Chadwick, D. Brown, R. Capote, Z. Ge, M.W. Herman, A. Ignatyuk, T. Ivanova, O. Iwamoto, A.J. Koning, A. Plompen, A. Trkov and all of the contributors to the CIELO project, “Results of the Collaborative International Evaluated Library Organization CIELO project,” EPJ Web of Conf. 239, 15003 (2020)

  57. R. Capote, A. Trkov et al., IAEA CIELO evaluation of neutron-induced reactions on \(^{235}\)U and \(^{238}\)U targets for incident energies up to 30 MeV. Nucl. Data Sheets 148, 254–292 (2018). https://doi.org/10.1016/j.nds.2018.02.005

  58. D. Brown et al., ENDF/B-VIII.0: The \(8^{th}\) major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018)

    Article  ADS  Google Scholar 

  59. M. Salvatores et al., “ Uncertainty and target accuracy assesment for innovative systems using recent covariance data evaluations”, Int Evaluat Cooper., 26, NEA no. 6410, OECD, NEA, Paris, France (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Capote.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capote, R., Quesada, J.M. An impact of Jacques Raynal on nuclear data evaluation. Eur. Phys. J. A 57, 210 (2021). https://doi.org/10.1140/epja/s10050-021-00486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00486-9

Navigation