Skip to main content

Advertisement

Log in

Quantitative Dental Mesowear Analysis in Domestic Caprids: a New Method to Reconstruct Management Strategies

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Dental mesowear is a widely used tool in archaeology and palaeontology for the reconstruction of the overall diet of mammals. This method is based on the characterisation of the height and relief of dental cusps, as they vary according to diet. The use of this method on domestic ungulates presents limitations because (1) currently, very few reference frameworks are available, and (2) the qualitative categorisation of cusps limits our observations and interpretations. In this work, we introduce the analysis of quantitative dental mesowear, based on the measurement of the angle and height of cusps from photographs. The use of this method on 26 present-day domestic sheep with two different feeding strategies showed very significant differences: the group with a dominant rangeland diet has high cusps with acute angles, and the group with a dominant grassland diet has lower cusps with obtuse angles. This method has been compared with the traditional technique of mesowear score, which consists in the qualitative categorisation of cusps into seven categories. However, the analysis showed that mesowear score is more prone to observer error than quantitative mesowear. In addition, quantitative mesowear better reflects the variability in dietary behaviours of extant sheep since observations are not limited into seven categories. To test quantitative mesowear in archaeological samples, we analysed caprine mesowear at two Iron Age sites (sixth-fifth centuries BC) from the northeast of the Iberian Peninsula: Empúries and Ullastret. The results show that caprids at the Ullastret site have a slightly more abrasive diet than at Empúries, which is consistent with data obtained from dental microwear in previous work. Overall, we show the potential of this technique, which can be combined with traditional techniques, to distinguish past caprine feeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackermans, N. L. (2020). The history of the mesowear: a review. PeerJ, 8, e8519.

  • Ackermans, N. L., Winkler, Schulz-Kornas, E., Kaiser, T.M., Müller, D. W. H., Kircher, P. R., Hummel, J., Clauss, M. & Hatt, J.-M. (2018). Controlled feeding experiments with diets of different abrasiveness reveal slow development of mesowear signal in goats (Capra aegagrus hircus). Journal of Experimental Biology, 221.

  • Ackermans, N. L., Martin, L. F., Codron, D., Hummel, J., Kircher, P., Richter, H., Kaiser, T. M., Clauss, M., & Hatt, J.-C. (2020a). Mesowear represents a lifetime signal in sheep (Ovis aries) within a long-term feeding experiment. Palaeogeography, Palaeoclimatology, Palaeoecology, 553, 109793.

  • Ackermans, N. L., Winkler, D. E., Martin, L. F., Kaiser, T. M., Clauss, M. & Hatt, J.-M. (2020b). Dust and grit matter: abrasives of different size lead to opposing dental microwear textures in experimentally fed sheep (Ovis aries). Journal of Experimental Biology, 223.

  • Alagich, A., Gardeisen, A., Alonso, S., Rovira, N., & Bogaard, A. (2018). Using stable isotopes and functional weed ecology to explore social differences in early urban contexts: The case of Lattara in Mediterranean France. Journal of Archaeological Science, 93, 135–149.

  • Aldezábal, A., & Garin, I. (2000). Browsing preference of feral goats (Capra hircus L.) in a Mediterranean mountain scrubland. Journal of Arid Environments, 44(1), 133–142.

  • Amano, N., Rivals, F., Moigne, A.-M., Ingicco, T., Sémah, F., & Simanjuntak, T. (2016). Paleoenvironment in East Java during the last 25,000 years as inferred from bovid and cervid dental wear analyses. Journal of Archaeological Science: Reports, 10, 155–165.

  • Animut, G., Goetsch, A. L., Aiken, G. E., Puchala, R., Detweiler, G., Krehbiel, C. R., Merkel, R. C., Sahlu, T., Dawson, L. J., Johnson, Z. B., & Gipson, T. A. (2005). Performance and forage selectivity of sheep and goats co-grazing grass/forb pastures at three stocking rates. Small Ruminnant Research, 59(2-3), 203–215.

  • Aquilué, X., Santos, M., Buxó, R., & Tremoleda, J. (1999). Intervencions arqueològiques a Sant Martí d'Empúries (1994-1996). De l’assentament colonial a l’Empúries actual.

  • Asensio, D., Francès, J., & Pons, E. (2002). Les implicacions econòmiques i comercials de la concentració de reserves de cereals a la Catalunya costanera en època ibèrica. Cypsela, 14, 125–140.

  • Balasse, M., Tresset, A., Bocherens, H., Mariotti, A., & Vigne, J.-D. (2000). Un abattage “post-lactation” sur des bovins domestiques néolithiques. Etude isotopique des restes osseux du site de Bercy (Paris, France). Anthropozoologica, 31, 9–48.

  • Blaise, É. (2006). Référentiel actuel de brebis « Préalpes du Sud » (Digne, Alpes-de-Haute Provence France) : pratiques d'élevage et âges dentaires. Anthropozoologica, 41, 191–214.

  • Blaise, É. (2009). Économie animale et gestion des troupeaux au Néolithique final en Provence: approche archéozoologique et contribution des analyses isotopiques de l’émail dentaire. Université d’Aix-Marseille I.

  • Blondel, C., Merceron, G., Andossa, L., Taisso, M. H., Vignaud, P., & Brunet, M. (2010). Dental mesowear analysis of the late Miocene Bovidae from Toros-Menalla (Chad) and early hominid habitats in Central Africa. Palaeogeography Palaeoclimtology Palaeoecology, 292(1-2), 184–191.

  • Cammidge, T., Kooyman, B., & Theodor, J. M. (2020). Diet reconstructions for end-Pleistocene Mammut americanum and Mammuthus based on comparative analysis of mesowear, microwear, and dental calculus in modern Loxodonta africana. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109403.

  • Castanyer, P., Santos, M., Tremoleda, J., Julià, R., Montaner, J., & Riera, S. (2016). Evolución del paisaje y del poblamiento del territorio de Emporion-Emporiae entre el Bronce Final y la Antigüedad Tardía. Madrider Mitteilungen, 57, 306–361.

  • Colominas, L., Pons, E. & Saña, M. (2011). Implications socioeconòmiques de l’activitat ramadera al nord-est de Catalunya en època ibérica. In: S. Valenzuela-Lamas, S., Padrós & C. Belarte (Eds.), Economia agropecuària i canvi social a partir de les restes bioarqueològiques. El primer mil·leni aC a la Mediterrània occidental (pp. 61-70). Universitat de Barcelona, Institut Català d’Arqueologia Clàssica.

  • Colominas, L., Rodríguez, C. F., & Eres, M. P. I. (2017). Animal husbandry and hunting practices in Hispania Tarraconensis: An overview. European Journal of Archaeology, 20(3), 510–534.

  • R Core Team. (2013). R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, from http://www.R-project.org/

  • Croft, D. A., & Weinstein, D. (2008). The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeography Palaeoclimatology Palaeoecology, 269, 203–114.

  • Cuartas, P., & García-González, R. (1992). Quercus ilex browse utilization by Caprini in Sierra de Cazorla and Segura (Spain). Vegetatio, 99-100(1), 317–330.

  • Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V., & Solounias, N. (2016). A combined mesowear analysis of late Miocene giraffids from North Chinese and Greek localities of the Pikermian Biome. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 194–204.

  • Ejarque, A., Julià, R., Reed, J. M., Mesquita-Joanes, F., Marco-Barba, J., & Riera, S. (2016). Coastal evolution in a Mediterranean microtidal zone: Mid to late holocene natural dynamics and human of the Castelló Lagoon, NE Spain. PLoS One, e0155446.

  • Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: A new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.

  • Franz-Odendaal, T. A., & Kaiser, T. M. (2003). Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Annales Zoologici Fennici, 40, 395–410.

  • Galbany, J., Martínez, L. M., López-Amor, H. M., Espurz, V., Horaldo, O., Romero, A., de Juan, J., & Pérez-Pérez, A. (2005). Error rates in buccal-dental microwear quantification using scanning electron microscopy. Scanning, 27(1), 23–29.

  • Grine, F. E. (1986). Dental evidence for Dietary differences in Australopithecus and Paranthropus: A 513 quantitative analysis of permanent molar microwear. Journal of Human Evolution, 15(8), 783–822.

  • Grine, F. E., Ungar, P. S., & Teaford, M. F. (2002). Error rates in dental microwear quantification using scanning electron microscopy. Scanning, 24(3), 144–153.

  • Halstead, P., Collins, P., & Isaakidou, V. (2002). Sorting the sheep from the goats: Morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. Journal of Archaeological Science, 29(5), 545–553.

  • Hatt, J.-M., Codron, D., Müller, D. W. H., Ackermans, N. L., Martin, L. F., Kircher, P. M., Hummel, J., & Clauss, M. (2019). The rumen washes off abrasives before heavy-duty chewing in ruminants. Mammalian Biology, 97, 104–111.

  • Hatt, J.-M., Cordon, D., Ackermans, N. L., Martin, L. F., Richter, H., Kircher, P. R., Gerspach, C., Hummel, J., & Clauss, M. (2020). Differences in the rumen washing mechanism in sheep fed diets with abrasives of various concentrations and sizes. Palaeogeography, Palaeoclimatology, Palaeoecology, 550, 109728.

  • Helmer, D. (2000). Discrimination des genres Ovis et Capra à l’aide des prémolaires inférieures 3 et 4 et interprétation des âges d’abattage: l’exemple de Dikili Tash (Grèce). Anthropozoologica, 31, 29–38.

  • Ibáñez, J. J., Jiménez-Manchón, S., Blaise, É., Nieto-Espinet, A., & Valenzuela-Lamas, S. (2020). Discriminating management strategies in modern and archaeological domestic caprines using low-magnification and confocal dental microwear analyses. Quaternary International, 557, 23–38.

  • Jiménez-Manchón, S., Rivals, F., Gardeisen, A., Valenzuela-Lamas, S., De Prado, G., Codina, F., Santos, M., Castanyer, P., Tremoleda, J. & Plana-Mallart, R. (2019). Alimentation et gestion pastorale des caprinés chez les Grecs et les Ibères du VIè au IVè av.n.è. à l'Empordà (nord-est de la Péninsula Ibérique). Nouvelles perspectives à partir de la micro-usure dentaire. In L. Gourichon, C. Daujeard & J.-P. Brugal (Eds.), Humans and Caprines : from Mountain to Steppe, from Hunting to Husbandry (pp- 227-241). Éditions APDCA.

  • Jiménez-Manchón, S., Blaise, É., & Gardeisen, A. (2020). Exploring low-magnification dental microwear of domestic ungulates: Qualitative observations to infer palaeodiets. Quaternary International, 557, 12–22.

  • Kaiser, T. M., Solounias, N., Fortelius, M., Bernor, R. L., & Schrenk, F. (2000). Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany). Carolinea: Beiträge zur naturkundlichen Forschung in Südwestdeutschland, 58, 103–114.

  • Kaiser, T. M., & Solounias, N. (2003). Extending the tooth mesowear method to extinct and extant equids. Geodiversitas, 25, 321–345.

  • Kaiser, T. M., Brasch, J., Castell, J. C., Schulz, E., & Clauss, M. (2009). Tooth wear in captive wild ruminant species differs from that of free-ranging conspecifics. Mammalian Biology, 74(6), 425–437.

  • Loffredo, L. F., & Desantis, L. R. G. (2014). Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalist Cormohipparion emsliei. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 42–52.

  • Lucas, P. W. (2004). Dental functional morphology: How teeth work. Cambridge University Press.

  • Mainland, I. L. (2003). Dental microwear in grazing and browsing gotland sheep (Ovis aries) and its implications for dietary reconstruction. Journal of Archaeological Science, 30(11), 1513–1527.

  • Marín-Leyva, A. H., DeMiguel, D., García-Zepeda, M. L., Ponce-Saavedra, J., Arroyo-Cabrales, J., Schaaf, P., & Alberdi, M. T. (2016). Dietary adaptability of Late Pleistocene Equus from West Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 748–757.

  • Martín, A., Codina, F., Plana-Mallart, R., & De Prado, G. (2010). Le site ibérique d’Ullastret (Baix Empordà, Catalogne) et son rapport avec le monde colonial méditerranéen. In H. Treziny (Ed.), Grecs et indigènes de la Catalogne à la Mer Noire (pp. 89–104). Bibliothèque d’Archéologie Méditerranéenne et Africaine.

  • Merceron, G., Blondel, C., Viriot, L., & Koufos & Bonis, G. D. (2007). Dental microwear analysis on bovids from the Vallesian (Late Miocene) of the Axios Valley in Greece: Reconstruction of the habitat of Ouranopithecus macedoniensis (Primates, Hominoidea). Geodiversitas, 29(3), 421–433.

  • Merceron, G., Ramdarshan, A., Blondel, C., Boisserie, J.-R., Brunetiere, N., Francisco, A., Gautier, D., Milhet, X., Novello, A., & Pret, D. (2016). Untangling the environmental from the dietary: Dust does not matter. Proceedings of the Royal Society B: Biological Sciences, 283, 0161032.

  • Merceron, G., Blondel, C., Brunetiere, N., Francisco, A., Gautier, D., & Ramdarshan, A. (2017). Dental microwear and controlled food testing on sheep: The TRIDENT project. Biosurface and Biotribology, 3(4), 174–183.

  • Mihlbachler, M. C., Rivals, F., Solounias, N., & Semprebon, G. M. (2011). Dietary change and evolution of horses in North America. Science, 331(6021), 1178–1181.

  • Montaner, J., Julià, R., Castanyer, P., Tremoleda, J., Santos, M., Riera, S., Usera, J., & Solà, J. (2014). El paleopaisatge fluvio-estuari d’Empúries. Estudis del Baix Empordà, 33, 11–51.

  • Nieto-Espinet, A., Valenzuela-Lamas, S., Bosch, D., & Gardeisen, A. (2020). Livestock production, politics and trace: A glimpse from Iron Age and Roman Languedoc. Journal of Archaeological Science: Reports, 30, 102077.

  • Payne, S. (1973). Kill-off patterns in sheep and goats: The mandibles from Asvankale. Anatolian Studies, 23, 281–303.

  • Pineda, A., Saladié, P., Expósito, I., Rodríguez-Hidalgo, A., Cáceres, I., Huguet, R., Rosas, A., López-Polín, L., Estalrrich, A., García-Tabernero, A., & Vallverdú, J. (2017). Characterizing hyena coprolites from two latrines of the Iberian Peninsula during the Early Pleistocene: Gran Dolina (Sierra de Atapuerca, Burgos) and la Mina (Barranc de la Boella, Tarragona). Palaeogeography, Palaeoclimatology, Palaeoecology, 480, 1–17.

  • Piqué, R. (2002). Paisatge i explotació forestal durant el I mil·leni a. n. e. a la plana empordanesa. Cypsela, 14, 211–228.

  • Py, M. (1993). Les Gaulois du Midi, de la fin de l’Âge du Bronze à la conquête romaine. Hachette.

  • Ramdarshan, C., Blondel, N., Brunetière, A., Francisco, D., Gautier, J., Surault, B., & Merceron, G. (2016). Seeds, browse and tooth wear: a sheep perspective. Ecology and Evolution, 6(16), 5559–5569.

  • Rasband, W. (2005). ImageJ. National Institute of Health, Bethesda MD.

  • Renaud, A., & Rivals, F. (2007). Combas (Gard). Un petit bœuf médiéval identifié dans un silo. Archéologie du Midi medieval, 25(1), 181–187.

  • Rieau, C. (2014). Étude de la gestion du bétail à l’aide de la méthode des micro-usures dentaires dans le Midi méditerranéen entre l’âge du Bronze et la période gallo-romaine. Doctoral Thesis, Université Paul-Valéry 3 de Montpellier.

  • Riera, S., & Esteban, A. (1994). Vegetation history and human activity during the last 6000 years on the central Catalan coast (northeastern Iberian Peninsula). Vegetation History and Archaeobotany, 3(1), 7–23.

  • Rivals, F. (2015). L’analyse de la micro- et méso-usure dentaire : méthodes et applications en archéozoologie. In M. Balasse, J.-P. Brugal, Y. Dauphin, E. M. Geigl, C. Oberlin, & I. Reiche (Eds.), Messages d’os: Archéométrie du squelette animale et humain. Éditions des archives contemporaines (pp. 241–254).

  • Rivals, F., & Semprebon, G. M. (2017). Latitude matters: An examination of behavioural plasticity in dietary traits amongst extant and Pleistocene Rangifer tarandus. Boreas, 46(2), 254–263.

  • Rivals, F., Mihlbachler, M. C., & Solounias, N. (2007). Effect of ontogenetic-age distribution in fossil and modern samples on the interpretation of ungulate paleodiets using the mesowear method. Journal of Vertebrate Paleontology, 27(3), 763–767.

  • Rivals, F., Schulz, E., & Kaiser, T. M. (2009). Late and middle Pleistocene ungulates dietary diversity in Western Europe indicate variations of Neanderthal paleoenvironments through time and space. Quaternary Science Reviews, 28(27-28), 3388–3400.

  • Rivals, F., Gardeisen, A., & Cantuel, J. (2011). Domestic and wild ungulates dietary traits at Kouphovouno (Sparte, Greece): Implications for livestock management and paleoenvironment in the Neolithic. Journal of Archaeological Science, 38(3), 528–537.

  • Saarinen, J., & Karme, A. (2017). Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – Applying a new mesowear approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 476, 42–54.

  • Saarinen, J., Karme, A., Cerling, T., Uno, K., Säilä, L., Kasiki, S., Ngene, S., Obari, T., Mbua, E., & Manthi, F. K. (2015). A new tooth wear-based dietary analysis method for proboscidea (Mammalia). Journal of Vertebrate Paleontology, 35(3), e918546.

  • Saarinen, J., Eronen, J., Fortelius, M., Seppä, H., & Lister, A. M. (2016). Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeontologia Electronica, 19(3), 32A.

  • Sánchez-Hernández, C., Rivals, F., Blasco, R., & Rosell, J. (2016). Tale of two timescales: Combining tooth wear methods with different temporal resolutions to detect seasonality of Palaeolithic hominin occupational patterns. Journal of Archaeological Science: Reports, 6, 790–797.

  • Sanmartí, J., & Belarte, C. (2001). Urbanización y desarrollo de estructuras estatales en la costa de Cataluña (siglos VII-III aC). In L. Berrocal & P. Gardes (Eds.), Entre Celtas e íberos. Las poblaciones protohistóricas de las Galias e Hispania (pp. 161-174). Real Academia de la Historia, Casa de Velázquez. Universidad Autónoma de Madrid.

  • Santos, M., Castanyer P. & Tremoleda J. (2013). Emporion arcaica: los ritmos y las fisonomías de los dos establecimientos originarios, a partir de los últimos datos arqueológicos. In S. Bouffier (Eds.), L’Occident grec de Marseille à Mégara Hyblaea (pp. 103-113). Errance.

  • Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., & Kaiser, T. M. (2013). Dietary abrasiveness is associated with variability of microwear dental surface texture in rabbits. PLoS One, 8(2), e56167.

  • Solounias, N., & Hayek, L. A. C. (1993). New methods of tooth microwear analysis and application to dietary determination of two extinct ungulates. Journal of Zoology, 229(3), 421–445.

  • Solounias, N., & Semprebon, G. (2002). Advances in the reconstruction of ungulate eco morphology with application to early fossil equids. American Museum Novitates, 3366, 1–49.

  • Solounias, N., Tariq, M., Hou, S., Danowitz, M., & Harrison, M. (2014). A new method of tooth mesowear and a test of it on domestic goats. Annales Zoologici Fennici, 51(1-2), 111–118.

  • Stauffer, J. B., Clauss, M., Müller, D. W. H., Hatt, J.-M., & Ackermans, N. L. (2019). Testing mesowear III on experimentally fed goats (Capra aegagrus hircus). Annales Zoologici Fennici, 56(1-6), 85–91.

  • Taylor, L., Kaiser, T., Schwitzer, C., Muller, D. W. H., Codron, C., Clauss, M., & Schulz, E. (2013). Detecting inter-cusp and inter-tooth wear patterns in Rhinocerotids. PLoS One, 8(12), e80921.

  • Teaford, M. F., & Walker, A. (1984). Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus. American Journal of Physical Anthropology, 64(2), 191–200.

  • Teale, C. L., & Miller, D. N. G. (2012). Mastodon herbivory in mid-latitude late-Pleistocene boreal forests of eastern North America. Quaternary Research, 7, 72–81.

  • Valenzuela-Lamas, S., & Albarella, U. (2017). Animal husbandry across the western roman empire. Changes and continuities. European Journal of Archaeology, 20(3), 402–415.

  • Valli, A. M.-F., & Palombo, M. R. (2008). Feeding behaviour of middle-size deer from the upper Pliocene site of Saint-Vallier (France) inferred by morphological and micro/mesowear analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 257(1-2), 106–122.

  • Van Asperen, E. N., & Kahlke, R.-D. (2015). Dietary variation and overlap in Central and Northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity. Quaternary Science Reviews, 107, 47–61.

  • Zeder, M. A., & Pilaar, S. E. (2010). Assessing the reliability of criteria used to identify mandibles and mandibular teeth in sheep, Ovis, and goats. Capra. Journal of Archaeological Science, 37(2), 225–242.

Download references

Acknowledgements

We are very grateful to Naya Cadalen for her observations and help. We acknowledge the farmers of Carmejane Farm by their help. Authors thank the anonymous reviewers for their careful reading and their insightful comments and suggestions.

Funding

This project has been supported by LabEx ARCHIMEDE from ‘Investissement d’Avenir’ programme ANR-11-LABX-0032-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Jiménez-Manchón.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Manchón, S., Blaise, É., Albesso, M. et al. Quantitative Dental Mesowear Analysis in Domestic Caprids: a New Method to Reconstruct Management Strategies. J Archaeol Method Theory 29, 540–560 (2022). https://doi.org/10.1007/s10816-021-09530-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-021-09530-w

Keywords

Navigation