Skip to main content
Log in

Methods for Medium-Scale Tectonic Mapping of Deep Ocean Areas

  • Published:
Geotectonics Aims and scope

Abstract

In our overview, we describe the evolution of methods and approaches for medium-scale tectonic mapping of deep ocean areas at scales from 1 : 1 000 000 to 1 : 15 000 000 and smaller, which is a synthesis of data on the structure of the bottom and a theoretical geodynamic model that interprets the genesis of the observed structures. Changes in the content of map legends are shown depending on the instrumental level of research and theory of tectogenesis to the level developed for land tectonics. Until 1970, the development of tectonic ocean mapping followed the path of direct convergence of the composition of map legends with their land counterparts, since data were interpreted based on fixism theory. When the ideas of mobilism were formed in the theory, the content of ocean maps acquired tectonic elements that differ from land, peculiar only to oceans. By 1970, extensive geological and geophysical data and their interpretation based on plate tectonics finally resulted in a specific tectonic legend for oceans. Tectonic maps were constructed with a new set of legend elements for all oceans, which were part of general tectonic maps of the framing of continents. The age gradation of the oceanic basement was created, based on the indexation of linear magnetic anomalies and the primary classification of younger intraplate structures overprinted on the basement. The use of satellite altimetry data, which has dense and uniform coverage at medium scales, gave new impetus for mapping the ocean floor and basement structures, even in areas where they are overdraped by sedimentary cover and are not highlighted in the ocean floor relief. This led to new-generation maps with a no less reliable topographic basis than spatially nonuniform echosounding. At the end of the 1980s, there began a fundamentally new stage of accumulation of instrumental measurement data and attempts to rationally adapt them into a theoretical geodynamic model. In the structure of oceanic crust, previously unknown tectonic elements were identified that had not been recorded during nonuniform shipboard surveys. New tectonic elements, established according to modern data, received a rational geodynamic interpretation using plate tectonics theory, assuming the block and tectonically stratified structure of moving plates. New tectonic maps and reference data are so saturated with information that it is necessary to move from small scales to 1 : 10 000 000 to display the details of the topographic bases on which they were interpreted. In our review, we address the unsolved problems that currently arise in compiling medium-scale tectonic maps of deep ocean areas, which are the structural features of intraplate deformation and magmatic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. The 1 : 20 000 000 Geological-Geophysical Atlas of the Angola–Brazilian and Mascarene–Australian Transocean Geotransects, Ed. by I. F. Glumov (Tsentral. Nauchno-Issled. Geol. Inst. Tsvetn. Blagorodn. Metallov, Moscow, 1999).

    Google Scholar 

  2. S. V. Aplonov and A. A. Trunin, “Migration of local instabilities along the divergent plate boundary of the Mid-Atlantic Ridge between the Marathon and Kane transforms,” Izv., Phys. Soild Earth 31 (9), 24–34 (1996).

    Google Scholar 

  3. A. D. Arkhangelsky and N. S. Shatsky, “The tectonic scheme of the USSR,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 11 (4), 323–348 (1933).

    Google Scholar 

  4. I. P. Atlasov, V. A. Vakar, V. D. Dibner, B. Kh. Egiazarov, A. V. Zimkin, and B. S. Romanovich, “New tectonic map of the Arctic,” Dokl. Akad. Nauk SSSR 156 (6) 1341–1342 (1964).

    Google Scholar 

  5. Great Soviet Encyclopedia, 3rd ed. (Entsiklopediya, Moscow, 1969), Vol. 1, pp. 282–294.

  6. F. J. Vine and D. H. Matthews, “Magnetic anomalies over oceanic ridges,” in New Global Tectonics, Ed. by L. P. Zonenshain and A. A. Kovalev (Mir, Moscow, 1974), pp. 32–37.

  7. V. A. Vernikovsky, N. L. Dobretsov, D. V. Metelkin, N. Yu. Matushkin, and I. Yu. Kulakov, “Concerning tectonics and the tectonic evolution of the Arctic,” Russ. Geol. Geophys. 54 (8), 838–858 (2013).

    Article  Google Scholar 

  8. R. S. Dietz, “Continent and ocean basin evolution by sea floor spreading,” in New Global Tectonics, Ed. by L. P. Zonenshain and A. A. Kovalev (Mir, Moscow, 1974), pp. 32–37.

  9. B. Kh. Egiazarov, I. P. Atlasov, and M. G. Ravich, The 1 : 10 000 000 Tectonic Map of the Polar Regions of the Earth (Naucnno-Issled. Inst. Geol. Arktiki, Leningrad, 1969) [in Russian].

    Google Scholar 

  10. P. N. Kropotkin, K. A. Shakhvarstova, and N. A. Fedorov, “Tectonic map of the Circum-Pacific mobile belt and the Pacific Ocean,” in Reports of Soviet Geologists of the XXII Session of the International Geological Congress “Alpine-Himalayan Orogeny,” December 14–22, 1964, New Delhi, India (Nedra, Moscow, 1964).

  11. P. N. Kropotkin and K. A. Shakhvarstova, “Geological structure of the Pacific Mobile Belt,” in Trans. Geol. Inst. USSR Acad. Sci., Ed. by A. V. Peyve (Nauka, Moscow, 1965), vol. 134.

    Google Scholar 

  12. A. O. Mazarovich, “Review of the state of knowledge on the structure and evolution of the Atlantic Ocean,” Geotectonics, No. 5, 75–89 (1993).

    Google Scholar 

  13. A. O. Mazarovich, “Geology of the Central Atlantic: Fractures, volcanic edifices, and oceanic bottom deformations,” in Trans. Geol. Inst. Ross. Acad. Sci., Ed. by Yu. G. Leonov (Nauchn. Mir, Moscow, 2000), Vol. 530.

    Google Scholar 

  14. A. O. Mazarovich and S. Yu. Sokolov, “Northwest-trending fracture zones in the Central Atlantic Ocean,” Geotectonics, No. 3, 247–254, 2002.

    Google Scholar 

  15. The 1 : 2 500 000 International Tectonic Map of the Europe, Ed. by N. S. Shatsky, G. Shtille, A. A. Bogdanov, and F. Blondel (Akad. Nauk SSSR, Moscow, 1962).

    Google Scholar 

  16. W. J. Morgan, Rises, trenches, great faults, and crustal blocks, in New Global Tectonics, Ed. by L. P. Zonenshain and A. A. Kovalev (Nauchny. Mir, Moscow, 1974), pp. 68–93.

    Google Scholar 

  17. Yu. M. Pushcharovsky, “Some general problems of the Arctic tectonics,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 9, 15–28 (1960).

  18. Yu. M. Pushcharovsky, “Introduction into the tectonics of the Pacific segment of the Earth,” in Trans. Geol. Inst. USSR Acad. Sci., Ed. by A.V. Peyve (Nauka, Moscow, 1972), Vol. 234.

    Google Scholar 

  19. Yu. N. Raznitsin, Exhumation signs of ultramafics in Knipovich Ridge (North Atlantic),” Dokl. Earth Sci. 431 (6), pp. 788–791 (2010).

  20. S. G. Skolotnev, N. N. Turko, S. Yu. Sokolov, A. A. Peyve, N. V. Tsukanov, S. Yu. Kolodyazhnyi, N. P. Chamov, Yu. E. Baramykov, A. S. Ponomarev, V. N. Efimov, A. E. Eskin, V. V. Petrova, L. A. Golovina, V. Yu. Lavrushin, E. A. Letyagina, E. P. Shevchenko, K. V. Krivosheya, and L. V. Zotov, “New data on the geological structure of the junction of the Cape Verde Rise, Cape Verde Abyssal Basin, and Bathymetrists Seamounts (Central Atlantic Ocean),” Dokl. Earth Sci. 416 (1), 1037–1041 (2007).

    Article  Google Scholar 

  21. S. G. Skolotnev and A. A. Peyve, “Composition, structure, origin, and evolution of off-axis linear volcanic structures of the Brazil Basin, South Atlantic,” Geotectonics 51 (1), 53–73 (2017).

    Article  Google Scholar 

  22. S. Yu. Sokolov, “Compilation of updated tectonic map for equatorial segment of Atlantic based on potential geophysical field data,” Vestn. KRAUNTs. Ser.: Nauki Zemle 38 (2), 59–75 (2018a).

    Google Scholar 

  23. S. Yu. Sokolov, “Tectonics and geodynamics of the Atlantic equatorial segment,” in Trans. Geol. Inst. Russ. Acad. Sci., Ed. by K. E. Degtyarev (Nauchn. Mir, 2018b), Vol. 618.

    Google Scholar 

  24. The 1 : 17 500 000 Tectonic Map of the Europe, Ed. by A. L. Yanshin (Nauka, Moscow, 1964).

    Google Scholar 

  25. The 1 : 45 000 000 Tectonic Map of the World, Ed. by Yu. G. Leonov and V. E. Khain (MinGeo SSSR, Vseross. Nauchno-Issled. Geol. Inst., Leningrad, 1984).

    Google Scholar 

  26. The 1 : 5 000 000 Tectonic Map of the USSR and Adjacent Countries, Ed. by N. S. Shatsky (Gosgeoltekhizdat, Moscow, 1956).

    Google Scholar 

  27. The 1 : 10 000 000 Tectonic Map of the Pacific Segment of the Earth, Ed. by Yu. M. Pushcharovsky and G. B. Udintsev (Geol. Inst. SSSR Akad. Nauk–Inst. Okeanol. SSSR Akad. Nauk–Glavn. Upravl. Geodez, Kartogr., 1970).

  28. The 1 : 10 000 000 Tectonic Map of the Arctic, Ed. by O. V. Petrov and M. Pubellier (Vseross. Nauchno-Issled. Geol. Inst–CGMW, St. Petersburg, 2018).

  29. G. B.Udintsev, Geomorphology and Tectonics of the Pacific Ocean Floor (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  30. V. E. Khain and M. G. Lomize, Geotectonics with Principles of Geodynamics (KDU, Moscow, 2005) [in Russian].

    Google Scholar 

  31. B. Heezen, M. Tarp, and M. Ewing, “The floors of the oceans. I. The North Atlantic. Text to accompany the physiographic diagram of the North Atlantic,” Spec. Paper—Geol. Soc. America, No. 65 (1959).

  32. H. H. Hess, “Mid-oceanic ridges and tectonics of the sea-floor,” in Submarine Geology and Geophysics, Ed. by W. F. Whittard and R. Bradshaw (Butterworths, London, 1965), pp. 317–333.

    Google Scholar 

  33. A. L. Yanshin, Tectonics of the Eurasia. Explanatory Note to the Tectonic Map of the Eurasia (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  34. E. Bonatti, D. Brunelli, W. R. Buck, A. Cipriani, P. Fabretti, V. Ferrante, L. Gasperini, and M. Ligi, “Flexural uplift of a lithospheric slab near the Vema Transform (Central Atlantic): Timing and mechanisms,” Earth Planet. Sci. Lett. 240 (3), 642–655 (2005).

    Article  Google Scholar 

  35. S. E. Briggs, R. J. Davies, J. Cartwright, and R. Morgan, “Thrusting in oceanic crust during continental drift offshore Niger Delta, Equatorial Africa,” Tectonics 28, 1–16 (2009). https://doi.org/10.1029/2008TC002266

    Article  Google Scholar 

  36. S. C. Cande, R. L. Larson, and J. L. LaBrecque, “Magnetic lineations in the Pacific Jurassic Quiet Zone,” Earth Planet. Sci. Lett. 41, 434–440 (1978).

    Article  Google Scholar 

  37. C. DeMets, R. G. Gordon, and D. F. Argus, “Geologically current plate motions,” Geophys. J. Int. 181, 1–80 (2010). https://doi.org/10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  38. R. S. Dietz, “Continent and ocean basin evolution by spreading of the sea floor,” Nature 190 (4779), 854–857 (1961). https://doi.org/10.1038/190854a0

    Article  Google Scholar 

  39. Digital Tectonic Activity Map Project (DTAM). NASA Goddard Space Flight Center (2019). https://visibleearth. nasa.gov/source/1517/dtam. Cited August 1, 2019.

  40. GEBCO 30" Bathymetry Grid. Version 20141103 (2014). http://www.gebco.net. Cited October 11, 2016.

  41. GEOROC Geochemical Database. http://georoc.mpch-mainz.gwdg.de/georoc/. Cited February 1, 2017.

  42. GPS Time Series Data. Jet Propulsion Laboratory of California Institute of Technology (2008). http:// sideshow.jpl.nasa.gov/mbh/series.html. Cited November 4, 2012.

  43. B. U. Haq, J. Hardenbol, and P. R. Vail, “Chronology of fluctuating sea levels since the Triassic,” Science 235, 1156–1167 (1987). https://doi.org/10.1126/science.235.4793.1156

    Article  Google Scholar 

  44. B. C. Heezen, R. D. Gerard, and M. Tharp, “The Vema fracture zone in the equatorial Atlantic,” J. Geophys. Res. 69, 733–739 (1964).

    Article  Google Scholar 

  45. H. H. Hess, “The AMSOC hole to the Earth’s mantle,” AGU Transact. 40, 340–345 (1959). https://doi.org/10.1029/tr040i004p00340

    Article  Google Scholar 

  46. K. J. Matthews, R. D. Müller, P. Wessel, and J. M. Whittaker, “The tectonic fabric of the ocean basins,” J. Geophys. Res. Ser.: Solid Earth 116, (B12109) (2011). https://doi.org/10.1029/2011JB008413

  47. R. D. Müller, M. Sdrolias, C. Gaina, and W. R. Roest, “Age, spreading rates, and spreading asymmetry of the World’s ocean crust,” Geochem. Geophys. Geosyst. 9 (4), 1–19 (2008). https://doi.org/10.1029/2007GC001743

    Article  Google Scholar 

  48. D. T. Sandwell and W. H. F. Smith, “Marine gravity anomaly from Geosat and ERS-1 satellite altymetry,” J. Geophys. Res. 102 (B5), 10039–10054 (1997).

    Article  Google Scholar 

  49. W. H. F. Smith and D. T. Sandwell, “Global sea floor topography from satellite altimetry and ship depth soundings,” Science 277 (5334), 1956–1962 (1997).

    Article  Google Scholar 

  50. E. O. Straume, C. Gaina, S. Medvedev, K. Hochmuth, K. Gohl, J. M. Whittaker, et al., “GlobSed: Updated total sediment thickness in the World’s oceans,” Geochem., Geophys., Geosyst. 20, 1756–1772 (2019). https://doi.org/10.1029/2018GC008115

    Article  Google Scholar 

  51. Tectonic Map of the Circum-Pacific Region. Scale 1 : 17 000 000, Ed. by. E. Scheibner, (USGS, NY, USA. 2013).

  52. Tectonic Map of the World. Scale 1 : 20 000 000, 1st ed. (Geol. Data Systems, Denver, USA. 2012). https:// geologicdata.com/gds-world-maps/. Cited January 28, 2020.

  53. USGS Earthquake Composite Catalog (2019). https:// earthquake.usgs.gov/earthquakes/search/. Cited September 11, 2019.

  54. F. J. Vine and D. H. Matthews, “Magnetic anomalies over oceanic ridges,” Nature 199 (4897), 947–949 (1963). https://doi.org/10.1038/199947a0

    Article  Google Scholar 

  55. P. Weatherall, K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, and R. Wigley, “A new digital bathymetric model of the World’s oceans,” Earth Space Sci. 2, 331–345 (2015). https://doi.org/10.1002/2015EA000107

    Article  Google Scholar 

  56. J. T. Wilson, “A new class of faults and their bearing on continental drift,” Nature 207 (4995), 343–347 (1965). https://doi.org/10.1038/207343a0

    Article  Google Scholar 

  57. N. H. Woodcock and M. Fisher, “Strike-slip duplexes,” J. Struct. Geol. 8 (7), 725–735 (1986).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to reviewer Prof. E.P. Dubinin (Moscow State University, Faculty of Geology, Moscow) and an anonymous reviewer for useful comments that helped improve the article.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-15-50 139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sokolov.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.Y., Turko, N.N. Methods for Medium-Scale Tectonic Mapping of Deep Ocean Areas. Geotecton. 55, 161–178 (2021). https://doi.org/10.1134/S0016852121020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121020096

Keywords:

Navigation