Skip to main content
Log in

Assessment of novel nature-inspired fuzzy models for predicting long contraction scouring and related uncertainties

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The scouring phenomenon is one of the major problems experienced in hydraulic engineering. In this study, an adaptive neuro-fuzzy inference system is hybridized with several evolutionary approaches, including the ant colony optimization, genetic algorithm, teaching-learning-based optimization, biogeographical-based optimization, and invasive weed optimization for estimating the long contraction scour depth. The proposed hybrid models are built using non-dimensional information collected from previous studies. The proposed hybrid intelligent models are evaluated using several statistical performance metrics and graphical presentations. Besides, the uncertainty of models, variables, and data are inspected. Based on the achieved modeling results, adaptive neuro-fuzzy inference system-biogeographic based optimization (ANFIS-BBO) provides superior prediction accuracy compared to others, with a maximum correlation coefficient (Rtest = 0.923) and minimum root mean square error value (RMSEtest = 0.0193). Thus, the proposed ANFIS-BBO is a capable cost-effective method for predicting long contraction scouring, thus, contributing to the base knowledge of hydraulic structure sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Straub L G. Effect of channel-contraction works upon regimen of movable bed-streams. Eos (Washington, D.C.), 1934, 15: 454–163

    Google Scholar 

  2. Laursen E M. An analysis of relief bridge scour. Journal of the Hydraulics Division, 1963, 89(3): 93–118

    Article  Google Scholar 

  3. Hong S H, Abid I. Physical model study of bridge contraction scour. KSCE Journal of Civil Engineering, 2016, 20(6): 2578–2585

    Article  Google Scholar 

  4. Komura S. Equilibrium depth of scour in long constrictions. Journal of the Hydraulics Division, 1966, 92(5): 17–37

    Article  Google Scholar 

  5. Gill M A. Bed erosion in rectangular long contraction. Journal of the Hydraulics Division, 1981, 107(3): 273–284

    Article  Google Scholar 

  6. Lim S Y, Lim S. Clear water scour in long contractions. Water, Maritime and Energy, 1993, 101(2): 93–98

    Google Scholar 

  7. Arneson L A, Abt S R. Vertical contraction scour at bridges with water flowing under pressure conditions. Transportation Research Record: Journal of the Transportation Research Board, 1998, 1647(1): 10–17

    Article  Google Scholar 

  8. Umbrell E R, Young G K, Stein S M, Jones J S. Clear-water contraction scour under bridges in pressure flow. Journal of Hydraulic Engineering (New York, N.Y.), 1998, 124(2): 236–240

    Google Scholar 

  9. Dey S, Sarkar A. Scour downstream of an apron due to submerged horizontal jets. Journal of Hydraulic Engineering (New York, N.Y.), 2006, 132(3): 246–257

    Google Scholar 

  10. Hong S H. Interaction of bridge contraction scour and pier scour in a laboratory river model. Dissertation for the Doctoral Degree. Atlanta: Georgia Institute of Technology, 2005

    Google Scholar 

  11. Ghazvinei P T, Ariffin J, Mohammad T A, Amini S A, Aghajani Mir M, Saheri S, Ansarimoghaddam S. Contraction scour analysis at protruding bridge abutments. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 2015, 169(1): 39–53

    Article  Google Scholar 

  12. Sharafati A, Haghbin M, Motta D, Yaseen Z M. The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: A comprehensive review, assessment and possible future research direction. Archives of Computational Methods in Engineering, 2021, 28(2): 423–447

    Article  Google Scholar 

  13. Jiang J, Ganju N K, Mehta A J. Estimation of contraction scour in riverbed using SERF. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2004, 130(4): 215–218

    Article  Google Scholar 

  14. Briaud J L, Chen H C, Li Y, Nurtjahyo P, Wang J. SRICOS-EFA method for contraction scour in fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1283–1294

    Article  Google Scholar 

  15. Duc B M, Rodi W. Numerical simulation of contraction scour in an open laboratory channel. Journal of Hydraulic Engineering (New York, N.Y.), 2008, 134(4): 367–377

    Google Scholar 

  16. Straub T D, Over T M. Pier and Contraction Scour Prediction in Cohesive Soils at Selected Bridges in Illinois. 2010 (Available at the website of IDEALS)

  17. Hamdia K M, Ghasemi H, Bazi Y, AlHichri H, Alajlan N, Rabczuk T. A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization. Finite Elements in Analysis and Design, 2019, 165: 21–30

    Article  MathSciNet  Google Scholar 

  18. Hamdia K M, Lahmer T, Nguyen-Thoi T, Rabczuk T. Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS. Computational Materials Science, 2015, 102: 304–313

    Article  Google Scholar 

  19. Mohammed M, Sharafati A, Al-Ansari N, Yaseen Z M. Shallow foundation settlement quantification: Application of hybridized adaptive neuro-fuzzy inference system model. Advances in Civil Engineering, 2020, 2020: 7381617

    Article  Google Scholar 

  20. Azamathulla H M. Neural networks to estimate scour downstream of ski-jump bucket spillway. Dissertation for the Doctoral Degree. Bombay: Indian Institute of Technology, 2005

    Google Scholar 

  21. Azamathulla H M, Ab Ghani A, Azazi Zakaria N. Prediction of scour below flip bucket using soft computing techniques. In: Proceedings of the AIP Conference. Hong Kong, Macao, China: AIP Conference Proceedings, 2010

  22. Guven A, Azamathulla H M, Zakaria N A. Linear genetic programming for prediction of circular pile scour. Ocean Engineering, 2009, 36(12–13): 985–991

    Article  Google Scholar 

  23. Najafzadeh M, Barani G A, Hessami Kermani M R. GMDH based back propagation algorithm to predict abutment scour in cohesive soils. Ocean Engineering, 2013, 59: 100–106

    Article  Google Scholar 

  24. Sharafati A, Yasa R, Azamathulla H M. Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 04018024

    Article  Google Scholar 

  25. Bateni S M, Jeng D S, Melville B W. Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers. Advances in Engineering Software, 2007, 38(2): 102–111

    Article  Google Scholar 

  26. Ayoubloo M K, Azamathulla H M, Ahmad Z, Ghani A A, Mahjoobi J, Rasekh A. Prediction of scour depth in downstream of ski-jump spillways using soft computing techniques. International Journal of Computers and Applications, 2011, 33(1): 92–97

    Article  Google Scholar 

  27. Najafzadeh M, Barani G A, Hessami-Kermani M R. Group method of data handling to predict scour depth around vertical piles under regular waves. Scientia Iranica, 2013, 20(3): 406–413

    Google Scholar 

  28. Najafzadeh M, Barani G A, Hessami Kermani M R. Estimation of Pipeline Scour due to Waves by GMDH. Journal of Pipeline Systems Engineering and Practice, 2014, 5(3):1–5

    Article  Google Scholar 

  29. Firat M. Scour depth prediction at bridge piers by ANFIS approach. Proceedings of the Institution of Civil Engineers-Water Management, 2009, 162(4): 279–288

    Article  Google Scholar 

  30. Jang J S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665–685

    Article  Google Scholar 

  31. Mohammadpour R, Ghani A A, Azamathulla H M. Estimation of dimension and time variation of local scour at short abutment. International Journal of River Basin Management, 2013, 11(1): 121–135.

    Article  Google Scholar 

  32. Khozani Z S, Khosravi K, Torabi M, Mosavi A, Rezaei B, Rabczuk T. Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models. 2019, arXiv:2001.01558

  33. Bateni S M, Borghei S M, Jeng D S. Neural network and neurofuzzy assessments for scour depth around bridge piers. Engineering Applications of Artificial Intelligence, 2007, 20(3): 401–414

    Article  Google Scholar 

  34. Sharafati A, Haghbin M, Haji Seyed Asadollah S B, Tiwari N K, Al-Ansari N, Yaseen Z M. Scouring depth assessment downstream of weirs using hybrid intelligence models. Applied Sciences (Basel, Switzerland), 2020, 10(11): 3714

    Google Scholar 

  35. Zounemat-Kermani M, Beheshti A A, Ataie-Ashtiani B, Sabbagh-Yazdi S R. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Applied Soft Computing, 2009, 9(2): 746–755

    Article  Google Scholar 

  36. Azamathulla H M, Ghani A A, Zakaria N A. ANFIS-based approach to predicting scour location of spillway. Proceedings of the Institution of Civil Engineers-Water Management, 2009, 162(6):399–407

    Article  Google Scholar 

  37. Farhoudi J, Hosseini S M, Sedghi-Asl M. Application of neurofuzzy model to estimate the characteristics of local scour downstream of stilling basins. Journal of Hydroinformatics, 2010, 12(2): 201–211

    Article  Google Scholar 

  38. Keshavarzi A, Gazni R, Homayoon S R. Prediction of scouring around an arch-shaped bed sill using Neuro-Fuzzy model. Applied Soft Computing, 2012, 12(1): 486–493.

    Article  Google Scholar 

  39. Cheng M Y, Cao M T. Hybrid intelligent inference model for enhancing prediction accuracy of scour depth around bridge piers. Structure and Infrastructure Engineering, 2015, 11(9): 1178–1189

    Article  Google Scholar 

  40. Yaseen Z, Ebtehaj I, Kim S, Sanikhani H, Asadi H, Ghareb M, Bonakdari H, Wan Mohtar W, Al-Ansari N, Shahid S. Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertaintyanalysis. Water (Basel), 2019, 11(3): 502

    Google Scholar 

  41. Sharafati A, Tafarojnoruz A, Shourian M, Yaseen Z M. Simulation of the depth scouring downstream sluice gate: The validation of newly developed data-intelligent models. Journal of Hydroenvironment Research, 2020, 29: 20–30

    Google Scholar 

  42. Raikar R V, Wang C Y, Shih H P, Hong J H. Prediction of contraction scour using ANN and GA. Flow Measurement and Instrumentation, 2016, 50: 26–34

    Article  Google Scholar 

  43. Najafzadeh M, Etemad-Shahidi A, Lim S Y. Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering, 2016, 111: 128–135

    Article  Google Scholar 

  44. Dey S, Raikar R V. Scour in long contractions. Journal of Hydraulic Engineering (New York, N.Y.), 2005, 131(12): 1036–1049

    Google Scholar 

  45. Webby M G. General scour at contraction. Road Research Unit Bulletin, 1984, 73: 109–118

    Google Scholar 

  46. Lim S Y, Cheng N S. Scouring in long contractions. Journal of Irrigation and Drainage Engineering, 1998, 124(5): 258–261

    Article  Google Scholar 

  47. Najafzadeh M, Shiri J, Rezaie-Balf M. New expression-based models to estimate scour depth at clear water conditions in rectangular channels. Marine Georesources & Geotechnology, 2018, 36(2): 227–235

    Article  Google Scholar 

  48. Sharafati A, Haghbin M, Asadollah S B H S, Tiwari N K, Al-Ansari N, Yaseen Z M. Scouring depth assessment downstream of weirs using hybrid intelligence models. Applied Sciences (Basel, Switzerland), 2020, 10(11): 3714

    Google Scholar 

  49. Dorigo M. Optimization, learning and natural algorithms. Dissertation for the Doctoral Degree. Milano: Politecnico di Milano, 1992

    Google Scholar 

  50. Simon D. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702–713

    Article  Google Scholar 

  51. Goldberg D E, Samtani M P. Engineering optimization via genetic algorithm. In: Proceedings of the Electronic computation. Birmingham: ASCE, 1986, 471–482

    Google Scholar 

  52. Mehrabian A R, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 2006, 1(4): 355–366

    Article  Google Scholar 

  53. Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer Design (Winchester), 2011, 43(3): 303–315

    Google Scholar 

  54. Li F, Morgan R, Williams D. Hybrid genetic approaches to ramping rate constrained dynamic economic dispatch. Electric Power Systems Research, 1997, 43(2): 97–103

    Article  Google Scholar 

  55. Sharafati A, Asadollah S B H S, Hosseinzadeh M. The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Safety and Environmental Protection, 2020, 140: 68–78

    Article  Google Scholar 

  56. Sharafati A, Haghbin M, Aldlemy M S, Mussa M H, Al Zand A W, Ali M, Bhagat S K, Al-Ansari N, Yaseen Z M. Development of advanced computer aid model for shear strength of concrete slender beam prediction. Applied Sciences (Basel, Switzerland), 2020, 10(11): 3811

    Google Scholar 

  57. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95

    Article  Google Scholar 

  58. Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84

    Article  Google Scholar 

  59. Liu B, Vu-Bac N, Zhuang X, Rabczuk T. Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mechanics of Materials, 2020, 142: 103280

    Article  Google Scholar 

  60. Vu-Bac N, Zhuang X, Rabczuk T. Uncertainty quantification for mechanical properties of polyethylene based on fully atomistic model. Materials (Basel), 2019, 12(21): 3613

    Article  Google Scholar 

  61. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

    Article  Google Scholar 

  62. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535

    Article  Google Scholar 

  63. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Sharafati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafati, A., Haghbin, M., Torabi, M. et al. Assessment of novel nature-inspired fuzzy models for predicting long contraction scouring and related uncertainties. Front. Struct. Civ. Eng. 15, 665–681 (2021). https://doi.org/10.1007/s11709-021-0713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-021-0713-0

Keywords

Navigation