Skip to main content
Log in

Multiple normalized solutions for a Sobolev critical Schrödinger equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the existence of standing waves, of prescribed \(L^2\)-norm (the mass), for the nonlinear Schrödinger equation with mixed power nonlinearities

$$\begin{aligned} i \partial _t \phi + \Delta \phi + \mu \phi |\phi |^{q-2} + \phi |\phi |^{2^* - 2} = 0, \quad (t, x) \in \mathbb {R}\times \mathbb {R}^N, \end{aligned}$$

where \(N \ge 3\), \(\phi : \mathbb {R}\times \mathbb {R}^N \rightarrow \mathbb {C}\), \(\mu > 0\), \(2< q < 2 + 4/N \) and \(2^* = 2N/(N-2)\) is the critical Sobolev exponent. It was proved in Jeanjean et al. (Orbital stability of ground states for a Sobolev critical Schrödinger equation, 2020) that, for small mass, ground states exist and correspond to local minima of the associated Energy functional. It was also established that despite the nonlinearity is Sobolev critical, the set of ground states is orbitally stable. Here we prove that, when \(N \ge 4\), there also exist standing waves which are not ground states and are located at a mountain-pass level of the Energy functional. These solutions are unstable by blow-up in finite time. Our study is motivated by a question raised by Soave (J Funct Anal 279(6):108610, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availibility statement

This article has no additional data.

References

  1. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth. Sel. Math. (N.S.) 19(2), 545–609 (2013)

    Article  Google Scholar 

  2. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Global dynamics above the ground state energy for the combined power type nonlinear Schrödinger equations with energy critical growth at low frequencies. arXiv.1510.08034 (2019)

  3. Almgren Jr., F.J., Lieb, E.H.: Symmetric decreasing rearrangement can be discontinuous. Bull. Am. Math. Soc. (N.S.) 20(2), 177–180 (1989)

    Article  MathSciNet  Google Scholar 

  4. Almgren, F.J., Lieb, E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2(4), 683–773 (1989)

    Article  MathSciNet  Google Scholar 

  5. Alves, C.O., Souto, M.A.S., Montenegro, M.: Existence of a ground state solution for a nonlinear scalar field equation with critical growth. Calc. Var. Part. Diff. Eq. 43(3–4), 537–554 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pure Appl. 106(4), 583–614 (2016)

    Article  Google Scholar 

  7. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Part. Diff. Eq. 58(1), 22 (2019)

    Article  Google Scholar 

  8. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48(3), 2028–2058 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bellazzini, J.J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. 107(2), 303–339 (2013)

    Article  MathSciNet  Google Scholar 

  10. Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9), 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  12. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82(4), 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  13. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master’s Degree]. Théorie et applications [Theory and applications]. Masson, Paris (1983)

    Google Scholar 

  14. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  15. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  16. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  Google Scholar 

  17. Cingolani, S., Jeanjean, L.: Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system. SIAM J. Math. Anal. 51(4), 3533–3568 (2019)

    Article  MathSciNet  Google Scholar 

  18. Coles, M., Gustafson, S.: Solitary waves and dynamics for subcritical perturbations of energy critical nls. Publ. Res. Inst. Math. Sci. 56(4), 647–699 (2020)

    Article  MathSciNet  Google Scholar 

  19. Fukaya, N., Ohta, M.: Strong instability of standing waves with negative energy for double power nonlinear Schrödinger equations. SUT J. Math. 54(2), 131–143 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ghoussoub, N.: Duality and perturbation methods in critical point theory, volume 107 of Cambridge tracts in mathematics. Cambridge University Press, Cambridge (1993). With appendices by David Robinson

  21. Hajaiej, H., Alexander, C.: Stuart: on the variational approach to the stability of standing waves for the nonlinear Schrödinger equation. Adv. Nonlinear Stud. 4(4), 469–501 (2004)

    Article  MathSciNet  Google Scholar 

  22. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  23. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. arXiv.2008.12084 (2020)

  24. Jeanjean, L., Sheng-Sen, L.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  25. Killip, R., Tadahiro, O., Pocovnicu, O., Vişan, M.: Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on \(\mathbb{R}^3\). Arch. Ration. Mech. Anal. 225(1), 469–548 (2017)

    Article  MathSciNet  Google Scholar 

  26. Le Coz, S.: A note on Berestycki-Cazenave’s classical instability result for nonlinear Schrödinger equations. Adv. Nonlinear Stud. 8(3), 455–463 (2008)

    Article  MathSciNet  Google Scholar 

  27. Lewin, M., Rota Nodari, S.: The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc. Var. Part. Diff. Eq. 59(6), 197 (2020)

    Article  Google Scholar 

  28. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  30. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  31. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    Article  MathSciNet  Google Scholar 

  32. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Diff. Eq. 269(9), 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  33. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020)

    Article  MathSciNet  Google Scholar 

  34. Stefanov, A.: On the normalized ground states of second order PDE’s with mixed power non-linearities. Commun. Math. Phys. 369(3), 929–971 (2019)

    Article  MathSciNet  Google Scholar 

  35. Struwe, M.: Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Springer-Verlag, Berlin (1990)

    MATH  Google Scholar 

  36. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Diff. Eq. 32(7–9), 1281–1343 (2007)

    Article  Google Scholar 

  37. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(3), 281–304 (1992)

    Article  MathSciNet  Google Scholar 

  38. Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical sobolev exponent and mixed nonlinearities. arXiv.2102.04030 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Jeanjean.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeanjean, L., Le, T.T. Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384, 101–134 (2022). https://doi.org/10.1007/s00208-021-02228-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02228-0

Navigation