Skip to main content

Advertisement

Log in

Bernstein inequalities via the heat semigroup

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We extend the classical Bernstein inequality to a general setting including the Laplace-Beltrami operator, Schrödinger operators and divergence form elliptic operators on Riemannian manifolds or domains. We prove \(L^p\) Bernstein inqualities as well as a “reverse inequality” which is new even for compact manifolds (with or without boundary). Such a reverse inequality can be seen as the dual of the Bernstein inequality. The heat kernel will be the backbone of our approach but we also develop new techniques. For example, once reformulating Bernstein inequalities in a semi-classical fashion we prove and use weak factorization of smooth functions à la Dixmier–Malliavin and BMO\(L^\infty \) multiplier results (in contrast to the usual \(L^\infty \)BMO ones). Also, our approach reveals a link between the \(L^p\)-Bernstein inequality and the boundedness on \(L^p\) of the Riesz transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For which (2.2) is true but the Riesz transform is unbounded for some \(p\in (2,+\infty )\), see [12].

  2. Even in the Euclidean case, \(e^{t\Delta }g\) does not converge in \(L^1({\mathbb {R}}^d)\) as \(t\rightarrow +\infty \) for positive \(g\in L^1({\mathbb {R}})\).

References

  1. Assaad, J., Ouhabaz, E.M.: Riesz transforms of Schrödinger operators on manifolds. J. Geometr. Anal. 22(4), 1108–1136 (2012)

    Article  Google Scholar 

  2. Auscher, P., Ben Ali, B.: Maximal inequalities and Riesz transform estimates on \(L^p\) spaces for Schrödinger operators with nonnegative potentials. Ann. Inst. Fourier (Grenoble) 57(6), 1975–2013 (2007)

    Article  MathSciNet  Google Scholar 

  3. Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. Éc. Norm. Supér. 37(6), 911–957 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bakry, D.: Transformations de Riesz pour les semi-groupes symetriques, Seconde patrie: Étude sous la condition \(\Gamma \ge 0\). Séminaire de Probabilités Strasbourg 19, 145–174 (1985)

    Google Scholar 

  5. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

    Book  Google Scholar 

  6. Bernicot, F., Frey, D.: Riesz transforms through reverse Hölder and Poincaré inequalities. Math. Z. 284(3–4), 791–826 (2016)

    Article  MathSciNet  Google Scholar 

  7. Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126(3), 569–605 (2004)

    Article  Google Scholar 

  8. Carron, G., Coulhon, T., Ouhabaz, E.M.: Gaussian estimates and \(L^p\)-boundedness of Riesz means. J. Evol. Equ. 2(3), 299–317 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chavel, I.: Eigenvalues in Riemannian Geometry, vol. 115. Academic Press, New York (1984)

    MATH  Google Scholar 

  10. Coulhon, T., Duong, X.T.: Riesz transforms for \(1\le p \le 2\). Trans. Am. Math. Soc. 351(3), 1151–1169 (1999)

    Article  Google Scholar 

  11. Coulhon, T., Duong, X.T.: Riesz transform and related inequalities on non-compact riemannian manifolds. Commun. Pure Appl. Math. 56(12), 1728–1751 (2003)

    Article  Google Scholar 

  12. Coulhon, T., Li, H.Q.: Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de riesz. Arch. Math. 83(3), 229–242 (2004)

    Article  MathSciNet  Google Scholar 

  13. Davies, E.B.: Pointwise bounds on the space and time derivatives of heat kernels. J. Oper. Theory:367–378 (1989)

  14. Davies, E.B.: Heat Kernels and Spectral Theory, vol. 92. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  15. Dixmier, J., Malliavin, P.: Factorisation de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. Math 102–4, 305–330 (1978)

    MATH  Google Scholar 

  16. Donnelly, H., Fefferman, C.: Growth and geometry of eigenfunctions of the Laplacian. Analysis and partial differential equations 122, 635–655, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York (1990)

  17. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  Google Scholar 

  18. Duong, X.T., Ouhabaz, E.M., Yan, L.: Endpoint estimates for riesz transforms of magnetic schrödinger operators. Arkiv för Matematik 44(2), 261–275 (2006)

    Article  MathSciNet  Google Scholar 

  19. Elst ter, A.F.M., Ouhabaz, E.M.: Dirichlet-to-Neumann and elliptic operators on \(C^{1+\kappa }\)-domains: Poisson and Gaussian bounds. J. Differ. Equ. 267(7), 4224–4273 (2019)

    Article  Google Scholar 

  20. Filbir, F., Mhaskar, H.N.: A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel. J. Fourier Anal. Appl. 16(5), 629–657 (2010)

    Article  MathSciNet  Google Scholar 

  21. Grigoryan, A.: Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold. J. Funct. Anal. 127(2), 363–389 (1995)

    Article  MathSciNet  Google Scholar 

  22. Grigoryan, A.: Heat Kernel and Analysis on Manifolds. American Mathematical Soc, Providence (2009)

    Google Scholar 

  23. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy Spaces Associated to Non-negative Self-Adjoint Operators Satisfying Davies–Gaffney Estimates, vol. 214-1007. American Mathematical Soc, Providence (2011)

    MATH  Google Scholar 

  24. Hsu, E.: Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. AMS 127(12), 3739–3744 (1999)

    Article  MathSciNet  Google Scholar 

  25. Imekraz, R.: Multidimensional Paley–Zygmund theorems and sharp \({L}^p\) estimates for some elliptic operators. Ann. Inst. Fourier 69(6), 2723–2809 (2019)

    Article  MathSciNet  Google Scholar 

  26. Li, H.Q.: Estimations du noyau de la chaleur sur les variétés coniques et ses applications. Bulletin des sciences mathematiques 124(5), 365–384 (2000)

    Article  MathSciNet  Google Scholar 

  27. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(1), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  28. Ortega-Cerdà, J., Pridhnani, B.: Carleson measures and Logvinenko-Sereda sets on compact manifolds. Forum Math. 1, 151–172 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Ouhabaz, E.M.: Analysis of Heat Equations on Domains (LMS-31). Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  30. Queffélec, H., Zarouf, R.: On Bernstein’s inequality for polynomials. R. Anal. Math. Phys. 9, 1209–1210 (2019)

    Article  MathSciNet  Google Scholar 

  31. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

    Google Scholar 

  32. Russ, E.: Riesz transforms on graphs for \(1\le p\le 2\). Math. Scand. 133–160 (2000)

  33. Shen, Z.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995)

    Article  MathSciNet  Google Scholar 

  34. Shi, Y., Xu, B.: Gradient estimate of an eigenfunction on a compact Riemannian manifold without boundary. Ann. Glob. Anal. Geom. 38(1), 21–26 (2010)

    Article  MathSciNet  Google Scholar 

  35. Varopoulos, NTh: Hardy–Littlewood theory for semigroups. J. Funct. Anal. 63(2), 240–260 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peng Chen and Lixin Yan for their generous help for the proof of the boundedness of \(\psi (L)\) from \(L^1(M)\) into \(H^1_L(M)\) for \(\psi \in {\mathcal {C}}_c^\infty (0, \infty )\).

The research of R. Imekraz is partly supported by the ANR project ESSED ANR-18-CE40-0028. The research of E.M. Ouhabaz is partly supported by the ANR project RAGE ANR-18-CE40-0012-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Maati Ouhabaz.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imekraz, R., Ouhabaz, E.M. Bernstein inequalities via the heat semigroup. Math. Ann. 382, 783–819 (2022). https://doi.org/10.1007/s00208-021-02221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02221-7

Mathematics Subject Classification

Navigation