Skip to main content
Log in

Differential Multi-cellularity Is Required for the Adaptation for Bacillus licheniformis to Withstand Heavy Metals Toxicity

  • Short communications
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus licheniformis is a multi-metal tolerant bacteria, isolated from the paddy rhizospheric soil sample. Upon the multiple metal toxicity, B. licheniformis altered their phenotypic/morphogenesis. Here we examined the effects of cadmium (Cd2+), chromium (Cr2+), and mercury (Hg2+) on the morphogenesis of B. licheniformis in comparison to control. We found that the ability of bacteria to grow effectively in presence of cadmium and chromium comes at a cost of acquiring cell density-driven mobility and reformation of filamentous to donut shape respectively. In particular, when bacteria grown on mercury it showed the bacteriostatic strategy to resist mercury. Furthermore, the findings suggest a large variation in the production of exo-polysaccharides (EPS) and suggest the possible role of EPS in gaining resistance to cadmium and chromium. Together this study identifies previously unknown characteristics of B. licheniformis to participate in bioremediation and provides the first evidence on positive effects of bacterial morphogenesis and the involvement of EPS in bacteria to resisting metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Howard SJ, Hopwood S, Davies SC (2014) Antimicrobial resistance: a global challenge. Sci Transl Med 6:1–2. https://doi.org/10.1126/scitranslmed.3009315

    Article  Google Scholar 

  2. Meredith HR, Andreani V, Ma HR et al (2018) Applying ecological resistance and resilience to dissect bacterial antibiotic responses. Sci Adv 4:eaau1873. https://doi.org/10.1126/sciadv.aau1873

  3. Kumar P, Patel SKS, Lee J-K, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561

    Article  CAS  Google Scholar 

  4. Naik T, Vanitha SC, Rajvanshi PK et al (2018) Novel microbial sources of tropane alkaloids: first report of production by endophytic fungi isolated from datura metel L. Curr Microbiol 75:206–212. https://doi.org/10.1007/s00284-017-1367-y

    Article  PubMed  CAS  Google Scholar 

  5. Blindauer CA, Harrison MD, Robinson AK et al (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    Article  CAS  Google Scholar 

  6. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861. https://doi.org/10.1016/j.jhazmat.2013.09.057

    Article  PubMed  CAS  Google Scholar 

  7. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111

    Article  CAS  Google Scholar 

  8. Dell’Amico E, Mazzocchi M, Cavalca L et al (2008) Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiol Res 163:671–683. https://doi.org/10.1016/j.micres.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  9. Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984. https://doi.org/10.1007/s00253-016-7364-4

    Article  PubMed  CAS  Google Scholar 

  10. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35. https://doi.org/10.1038/nrmicro2074

    Article  PubMed  CAS  Google Scholar 

  11. Chauhan NS, Ranjan R, Purohit HJ et al (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    Article  CAS  Google Scholar 

  12. Narancic T, Djokic L, Kenny ST et al (2012) Metabolic versatility of Gram-positive microbial isolates from contaminated river sediments. J Hazard Mater 215–216:243–251. https://doi.org/10.1016/j.jhazmat.2012.02.059

    Article  PubMed  CAS  Google Scholar 

  13. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Frementation of biowaste to H 2 by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227

    Article  CAS  Google Scholar 

  14. Chandrashekar MA, Soumya Pai K, Ramesh SKC, Geetha N, Puttaraju HR, Raju NS MS (2017) Biodegradation of organophosphorous pesticide, Chlorpyrifos by soil bacterium - Bacillus Megaterium Rc 88. Asian J Microbiol Biotechnol Environ Sci 19:146–152

    Google Scholar 

  15. Sunil KCR, Swati K, Bhavya G et al (2015) Streptomyces flavomacrosporus, A multi-metal tolerant potential bioremediation candidate isolated from paddy field irrigated with industrial effluents. Int J Life Sci 3:9–15

    Google Scholar 

  16. Bhavya G, Kumar C-RS, Swati K, Geetha N (2015) In search of industrial clean-up clients; evaluation of heavy metal tolerability of rhizospheric Trichoderma. Int J Innov Sci Eng Technol 2:948–952

    Google Scholar 

  17. Carlos FS, dos Santos BL, Andreazza R et al (2017) Irrigation of paddy soil with industrial landfill leachate: impacts in rice productivity, plant nutrition, and chemical characteristics of soil. Paddy Water Environ 15:133–144

    Article  Google Scholar 

  18. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4:e4438

    Article  CAS  Google Scholar 

  19. Kawasaki K, Mochizuki a, Matsushita M et al (1997) Modeling spatio-temporal patterns generated by Bacillus subtilis. J Theor Biol 188:177–185. https://doi.org/10.1006/jtbi.1997.0462

    Article  PubMed  CAS  Google Scholar 

  20. Ben-Jacob E, Cohen I, Gutnick DL (1998) Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 52:779–806. https://doi.org/10.1146/annurev.micro.52.1.779

    Article  PubMed  CAS  Google Scholar 

  21. West SA, Cooper GA (2016) Division of labour in microorganisms: an evolutionary perspective. Nat Rev Microbiol 14:716. https://doi.org/10.1038/nrmicro.2016.111

    Article  PubMed  CAS  Google Scholar 

  22. Kim W, Levy SB, Foster KR (2008) Rapid radiation in bacteria leads to a division of labour. Nat Commun 354:1395–1405. https://doi.org/10.1038/ncomms10508

    Article  CAS  Google Scholar 

  23. Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci 107:3776–3781. https://doi.org/10.1073/pnas.0910934107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumar C-RS, Bhavya G, Kini R, Geetha N (2017) Practiced gram negative bacteria from dyeing industry effluents snub metal toxicity to survive. J Appl Biol Biotechnol Vol 5:37–42

    Google Scholar 

  25. Arora G, Sajid A, Kalia VC (2017) Drug resistance in bacteria, fungi, malaria, and cancer. Springer, Switzerland. https://doi.org/10.1007/978-3-319-48683-3

  26. Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. https://doi.org/10.1007/s12088-013-0443-7

  27. Patel SKS, Kim J-H, Kalia VC, Lee J-K (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59:96–99

    Article  CAS  Google Scholar 

  28. Kalia VC, Rani A, Lal S et al (2007) Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2:211–224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledges the support by the Department of Studies in Biotechnology, University of Mysore. The Treasurer, Global Association of Scientific Young Minds, Pradeep Kumar P. M. for his assistance in soil sample collection and for the financial support under GASYM research grant. SCR also acknowledges MMK and SDM, College for Women, Mysuru for the facilities.

Funding

This work is partially supported by University Grant Commission File No. F. 41–525/2012 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Channarayapatna-Ramesh Sunilkumar.

Ethics declarations

Conflict of interest

The authors declare No Conflict of Interest with this present research report. (The formulation including bacteria and other component is filled for US patent, with SEED Health Pvt. Ltd. California, USA)

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunilkumar, CR., Stephen-Victor, E., Naripogu, K.B. et al. Differential Multi-cellularity Is Required for the Adaptation for Bacillus licheniformis to Withstand Heavy Metals Toxicity. Indian J Microbiol 61, 524–529 (2021). https://doi.org/10.1007/s12088-021-00958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00958-y

Keywords

Navigation