Skip to main content
Log in

A Single-opening&closing Valve Tester for Direct Measurement of Closing Volume of the Heart Valve

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to develop a novel single opening&closing pulsatile flow in-vitro valve tester for direct measurement of closing volume of the heart valve.

Methods

A single opening&closing valve tester was composed of a piston pump, valve mounting chamber, reservoir, measurement and control system. The piston pump was used to drive a valve to open and close with dictated flow which comprised three phases of accelerated, constant, and decelerated flow with six slopes. A high speed camera was used to record valve opening and closing images. Two pressure transducers across the tested valve were used to capture the ending time of valve closing which was verified by the high-speed photography. The closing time was measured and closing volume was calculated with a piston displacement volume during valve closing. A tilting disc valve and porcine mitral valve were tested.

Results

There was a big difference in flowrate between the Transonic flowmeter and piston pump. The heart valve opened and closed under the dictated flow driven by the piston pump. The transvalvular pressure was minor during valve opening and then increased sharply during valve closing. The closing time varied approximately linearly with the slope of the decelerated flow and was comparable between the two methods by the transvalvular pressure and high-speed photography. The closing volumes did not change much with the slope of the decelerated flow and were 7.0 ± 1.0 and 14.0 ± 1.5 mL for the tilting disc valve and mitral valve, respectively.

Conclusion

Pulsatile flow is challenging to the flowmeter. A novel single opening&closing pulsatile flow in-vitro valve tester for the heart valve has successfully been developed and can be used to simulate and evaluate the opening and closing hemodynamics of the heart valve. The tester can be used to measure valve closing volume and time accurately with a standardized testing protocol free from effect of other components such as the resistance, compliance units and auxiliary valve in the continuous pulsatile flow valve tester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Amini Khoiy, K., K. T. Asgarian, F. Loth, and R. Amini. Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts. PLoS ONE 13(11):2018. https://doi.org/10.1371/journal.pone.0206744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amini Khoiy, K., D. Biswas, T. N. Decker, K. T. Asgarian, F. Loth, and R. Amini. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J. Biomech. Eng. 2016. https://doi.org/10.1115/1.4034621.

    Article  PubMed  Google Scholar 

  3. Annerel, S., T. Claessens, J. Degroote, P. Segers, and J. Vierendeels. Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments. Med. Eng. Phys. 36(8):1014–1023, 2014. https://doi.org/10.1016/j.medengphy.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  4. Arjunon, S., P. H. Ardana, N. Saikrishnan, S. Madhani, B. Foster, A. Glezer, et al. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices. J. Biomech. Eng. 137(4):2015. https://doi.org/10.1115/1.4029579.

    Article  PubMed  Google Scholar 

  5. Beldi, G., A. Bosshard, O. M. Hess, U. Althaus, and B. H. Walpoth. Transit time flow measurement: experimental validation and comparison of three different systems. Ann. Thorac. Surg. 70(1):212–217, 2000. https://doi.org/10.1016/s0003-4975(00)01246-7.

    Article  CAS  PubMed  Google Scholar 

  6. Bloodworth, C. H., E. L. Pierce, T. F. Easley, A. Drach, A. H. Khalighi, M. Toma, et al. Ex vivo methods for informing computational models of the mitral valve. Ann. Biomed. Eng. 45(2):496–507, 2016. https://doi.org/10.1007/s10439-016-1734-z.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chancellor, W. Z., S. A. Schubert, and G. Ailawadi. Transcatheter interventions for functional mitral regurgitation. Ann. Cardiothorac. Surg. 7(6):764–770, 2018. https://doi.org/10.21037/acs.2018.09.01.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dasi, L. P., D. W. Murphy, A. Glezer, and A. P. Yoganathan. Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41(6):1166–1173, 2008. https://doi.org/10.1016/j.jbiomech.2008.01.024.

    Article  PubMed  Google Scholar 

  9. Easley, T. F., C. H. Bloodworth, V. Bhal, and A. P. Yoganathan. Effects of annular contraction on anterior leaflet strain using an in vitro simulator with a dynamically contracting mitral annulus. J. Biomech. 66:51–56, 2018. https://doi.org/10.1016/j.jbiomech.2017.10.045.

    Article  PubMed  Google Scholar 

  10. Garg, P., R. J. van der Geest, P. P. Swoboda, S. Crandon, G. J. Fent, J. R. J. Foley, et al. Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics. Eur. Heart J. 20(1):108–117, 2019. https://doi.org/10.1093/ehjci/jey121.

    Article  Google Scholar 

  11. Gheorghe, L., B. J. W. M. Rensing, J. A. S. Van der Heyden, F. D. Eefting, M. C. Post, B. Rana, et al. Transcatheter tricuspid valve interventions: an emerging field. Curr. Cardiol. Rep. 2019. https://doi.org/10.1007/s11886-019-1119-7.

    Article  PubMed  Google Scholar 

  12. Goode, D., R. Dhaliwal, and H. Mohammadi. Transcatheter mitral valve replacement: state of the art. Cardiovasc. Eng. Technol. 11(3):229–253, 2020. https://doi.org/10.1007/s13239-020-00460-4.

    Article  PubMed  Google Scholar 

  13. Gupta, T., D. Kolte, S. Khera, K. Goel, P. A. Villablanca, A. Kalra, et al. The changing landscape of aortic valve replacement in the USA. EuroIntervention. 15(11):e968–e974, 2019. https://doi.org/10.4244/EIJ-D-19-00381.

    Article  PubMed  Google Scholar 

  14. He, Z., Y. Liu, T. Jing, G. Zhang, H. Liu, and H. Wang. Heart valve model with controllable closing volume. J. Drain. Irrig. Mach. Eng. 2019. https://doi.org/10.3969/j.issn.1674-8530.17.0191.

    Article  Google Scholar 

  15. He, Z., K. Zhang, and B. Gao. A novel coaptation plate device for functional mitral regurgitation: an in vitro study. Ann. Biomed. Eng. 42(10):2039–2047, 2014. https://doi.org/10.1007/s10439-014-1065-x.

    Article  PubMed  Google Scholar 

  16. He, Z., K. Zhang, T. Jing, and Y. Wang. Transapical coaptation plate for functional mitral regurgitation: an in vitro study. Ann. Biomed. Eng. 45(2):487–495, 2017. https://doi.org/10.1007/s10439-016-1726-z.

    Article  PubMed  Google Scholar 

  17. Hu, Y., L. Shi, S. Parameswaran, S. Smirnov, and Z. He. Left ventricular vortex under mitral valve edge-to-edge repair. Cardiovasc. Eng. Technol. 1(4):235–243, 2010. https://doi.org/10.1007/s13239-010-0022-6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jaworek, M., M. Piola, F. Lucherini, G. Gelpi, M. Castagna, G. Lentini, et al. Functional tricuspid regurgitation model in a beating heart platform. ASAIO J. 63(4):438–444, 2017. https://doi.org/10.1097/MAT.0000000000000510.

    Article  PubMed  Google Scholar 

  19. Jimenez, J. H., J. Forbess, L. R. Croft, L. Small, Z. He, and A. P. Yoganathan. Effects of annular size, transmitral pressure, and mitral flow rate on the edge-to-edge repair: an in vitro study. Ann. Thorac. Surg. 82(4):1362–1368, 2006. https://doi.org/10.1016/j.athoracsur.2006.05.008.

    Article  PubMed  Google Scholar 

  20. Kolte, D., and S. Elmariah. Current state of transcatheter tricuspid valve repair. Cardiovasc. Diagn. Ther. 10(1):89–97, 2020. https://doi.org/10.21037/cdt.2019.09.11.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of mechanical heart valve prostheses. Artif. Organs. 18(10):758–767, 1994. https://doi.org/10.1111/j.1525-1594.1994.tb03315.x.

    Article  CAS  PubMed  Google Scholar 

  22. Leopaldi, A. M., R. Vismara, S. van Tuijl, A. Redaelli, F. N. van de Vosse, G. B. Fiore, et al. A novel passive left heart platform for device testing and research. Med. Eng. Phys. 37(4):361–366, 2015. https://doi.org/10.1016/j.medengphy.2015.01.013.

    Article  CAS  PubMed  Google Scholar 

  23. Li, M., N. A. Hotaling, D. N. Ku, and C. R. Forest. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS ONE 9(1):2014. https://doi.org/10.1371/journal.pone.0082493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luca, A., R. Marchiano, and J. C. Chassaing. Numerical simulation of transit-time ultrasonic flowmeters by a direct approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 63(6):886–897, 2016. https://doi.org/10.1109/TUFFC.2016.2545714.

    Article  PubMed  Google Scholar 

  25. Luraghi, G., W. Wu, F. De Gaetano, J. F. Rodriguez Matas, G. D. Moggridge, M. Serrani, et al. Evaluation of an aortic valve prosthesis: fluid-structure interaction or structural simulation? J. Biomech. 58:45–51, 2017. https://doi.org/10.1016/j.jbiomech.2017.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lynnworth, L. C., and Y. Liu. Ultrasonic flowmeters: half-century progress report, 1955-2005. Ultrasonics. 44(Suppl 1):e1371–e1378, 2006. https://doi.org/10.1016/j.ultras.2006.05.046.

    Article  PubMed  Google Scholar 

  27. Midha, P. A., V. Raghav, I. Okafor, and A. P. Yoganathan. The effect of valve-in-valve implantation height on sinus flow. Ann. Biomed. Eng. 45(2):405–412, 2016. https://doi.org/10.1007/s10439-016-1642-2.

    Article  PubMed  Google Scholar 

  28. Muntane-Carol, G., A. Alperi, L. Faroux, E. Bedard, F. Philippon, and J. Rodes-Cabau. Transcatheter tricuspid valve intervention: coaptation devices. Front. Cardiovasc. Med. 7:139, 2020. https://doi.org/10.3389/fcvm.2020.00139.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nordgaard, H. B., N. Vitale, R. Astudillo, A. Renzulli, P. Romundstad, and R. Haaverstad. Pulsatility index variations using two different transit-time flowmeters in coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 37(5):1063–1067, 2010. https://doi.org/10.1016/j.ejcts.2009.11.030.

    Article  PubMed  Google Scholar 

  30. Peruzzo, P., F. M. Susin, A. Colli, and G. Burriesci. In vitro assessment of pacing as therapy for aortic regurgitation. Open Heart. 6(1):2019. https://doi.org/10.1136/openhrt-2018-000976.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Piatti, F., F. Sturla, G. Marom, J. Sheriff, T. E. Claiborne, M. J. Slepian, et al. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach. J. Biomech. 48(13):3641–3649, 2015. https://doi.org/10.1016/j.jbiomech.2015.08.009.

    Article  PubMed  Google Scholar 

  32. Pierce, E. L., K. Kohli, B. Ncho, V. Sadri, C. H. Bloodworth, F. E. Mangan, et al. Novel in vitro test systems and insights for transcatheter mitral valve design, Part II: radial expansion forces. Ann. Biomed. Eng. 47(2):392–402, 2018. https://doi.org/10.1007/s10439-018-02139-3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schmidt, R. F., and G. Thews. Human Physiology (2nd completely rev. ed.). Berlin: Springer, 1989.

    Book  Google Scholar 

  34. Seemann, F., E. Heiberg, M. Carlsson, R. A. Gonzales, L. A. Baldassarre, M. Qiu, et al. Valvular imaging in the era of feature-tracking: A slice-following cardiac MR sequence to measure mitral flow. J. Magn. Reson. Imaging. 51(5):1412–1421, 2020. https://doi.org/10.1002/jmri.26971.

    Article  PubMed  Google Scholar 

  35. Sodhani, D., S. Reese, A. Aksenov, S. Soğanci, S. Jockenhövel, P. Mela, et al. Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: validation with an in-vitro test. J. Biomech. 78:52–69, 2018. https://doi.org/10.1016/j.jbiomech.2018.07.018.

    Article  PubMed  Google Scholar 

  36. Vismara, R., A. M. Leopaldi, M. Piola, C. Asselta, M. Lemma, C. Antona, et al. In vitro assessment of mitral valve function in cyclically pressurized porcine hearts. Med. Eng. Phys. 38(4):346–353, 2016. https://doi.org/10.1016/j.medengphy.2016.01.007.

    Article  PubMed  Google Scholar 

  37. Vismara, R., A. Pavesi, E. Votta, M. Taramasso, F. Maisano, and G. B. Fiore. A pulsatile simulator for the in vitro analysis of the mitral valve with tri-axial papillary muscle displacement. Int. J. Artif. Organs. 34(4):383–391, 2011. https://doi.org/10.5301/IJAO.2011.7729.

    Article  PubMed  Google Scholar 

  38. Warnock, J. N., S. Konduri, Z. He, and A. P. Yoganathan. Design of a sterile organ culture system for the ex vivo study of aortic heart valves. J. Biomech. Eng. 127(5):857–861, 2005.

    Article  Google Scholar 

  39. Wu, C., N. Saikrishnan, A. J. Chalekian, R. Fraser, O. Ieropoli, S. M. Retta, et al. In-vitro pulsatile flow testing of prosthetic heart valves: a round-robin study by the ISO Cardiac Valves Working Group. Cardiovasc. Eng. Technol. 10(3):397–422, 2019. https://doi.org/10.1007/s13239-019-00422-5.

    Article  PubMed  Google Scholar 

  40. Yoganathan, A. P., Z. He, and Jones S. Casey. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6(1):331–362, 2004. https://doi.org/10.1146/annurev.bioeng.6.040803.140111.

    Article  CAS  PubMed  Google Scholar 

  41. Zapanta, C. M., D. R. Stinebring, D. S. Sneckenberger, S. Deutsch, D. B. Geselowitz, J. M. Tarbell, et al. In vivo observation of cavitation on prosthetic heart valves. ASAIO J. 42(5):M550–M555, 1996. https://doi.org/10.1097/00002480-199609000-00047.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, R., X. Liu, S. Chen, S. Parameswaran, and Z. He. Mechanistic study of ventricular hook anchor for heart valve replacement or repair. Med. Novel Technol. Dev. 5:2020. https://doi.org/10.1016/j.medntd.2020.100033.

    Article  CAS  Google Scholar 

  43. Zhang, G., H. Wang, T. Jing, and Z. He. Research of mitral valve model in the 0d left ventricular circulation system. Chin. J. Biomed. Eng. 36(03):300–307, 2017. https://doi.org/10.3969/j.issn.0258-8021.2017.03.006.

    Article  Google Scholar 

Download references

Author Contributions

HW contributed to conceptualization, performed the experiment, data analyses and wrote the manuscript; ZC performed the experiment; ZZ performed the analysis with constructive discussions; ZH contributed to the conception of the study.

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of interest

Hao Wang is the inventor of the single opening&closing tester. The other authors do not have conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoming He.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cui, Z., Zhou, Z. et al. A Single-opening&closing Valve Tester for Direct Measurement of Closing Volume of the Heart Valve. Cardiovasc Eng Tech 13, 80–89 (2022). https://doi.org/10.1007/s13239-021-00560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00560-9

Keywords

Navigation