Skip to main content
Log in

Effects of Rock Dust Particles on Airway Mucus Viscosity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Limestone can absorb heat thermal energy from heated gases and release carbon dioxide that has been applied in mines to prevent coal dust explosions. However, the effect of various rock dust particles on altering mucin exocytosis and its rheological properties, leading to concomitant pathological responses, is still unclear. Our research investigated the difference among common rock dusts used in the industry (unmodified limestone (UCRD) and surface modified limestone (MTRD)), their effects on mucin swelling kinetics and airway mucin viscoelastic properties of A549 cells. Our data showed no obvious cytotoxicity on A549 cells with modified and unmodified dust particle exposures. MTRD (modified particles) also demonstrate less harmful effects with less calcium leaching out and cause less disturbance on mucus viscosity compared with UCRD (unmodified particles). Based on the results obtained from this study, modified dust particles provide a better possibility with less interference with airway mucus viscosity and clearance. These findings will provide much needed knowledge and understanding to establish the selection criteria/consideration of rock dusts for the coal industry practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention, Mining feature: Coal mine explosion prevention accomplishments. https://www.cdc.gov/niosh/mining/features/explprevfeature.html.

  2. Khaliullin, T. O., E. R. Kisin, N. Yanamala, S. Guppi, M. Harper, T. Lee, and A. A. Shvedova (2019) Comparative cytotoxicity of respirable surface-treated/untreated calcium carbonate rock dust particles in vitro. Toxicol. Appl. Pharmacol. 362: 67–76.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J., K. Xu, G. Reniers, and G. You (2020) Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018. Process Saf. Environ. Prot. 133: 332–340.

    Article  CAS  Google Scholar 

  4. Zhu, Y., D. Wang, Z. Shao, C. Xu, X. Zhu, X. Qi, and F. Liu (2019) A statistical analysis of coalmine fires and explosions in China. Process Saf. Environ. Prot. 121: 357–366.

    Article  CAS  Google Scholar 

  5. National Academies of Sciences, Engineering, and Medicine (2018) Monitoring and Sampling Approaches to Assess Underground Coal Mine Dust Exposures. The National Academies Press, Washington, DC, USA.

    Google Scholar 

  6. Perera, I. E., M. J. Sapko, M. L. Harris, I. A. Zlochower, and E. S. Weiss (2016) Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust. J. Loss Prev. Process Ind. 39: 7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Soo, J. C., T. Lee, W. P. Chisholm, D. Farcas, D. Schwegler-Berry, and M. Harper (2016) Treated and untreated rock dust: Quartz content and physical characterization. J. Occup. Environ. Hyg. 13: D201–D207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris, M. L., J. Organiscak, S. Klima, and I. E. Perera (2017) Respirable dust measured downwind during rock dust application. Min. Eng. 69: 69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopez, A. D. and C. C. Murray (1998) The global burden of disease, 1990–2020. Nat. Med. 4: 1241–1243.

    Article  CAS  PubMed  Google Scholar 

  10. Coggon, D. and A. N. Taylor (1998) Coal mining and chronic obstructive pulmonary disease: a review of the evidence. Thorax. 53: 398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hendryx, M. and M. M. Ahern (2008) Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health. 98: 669–671.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thornton, D. J. and J. K. Sheehan (2004) From mucins to mucus: Toward a more coherent understanding of this essential barrier. Proc. Am. Thorac. Soc. 1: 54–61.

    Article  CAS  PubMed  Google Scholar 

  13. Thornton, D. J., K. Rousseau, and M. A. McGuckin (2008) Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70: 459–486.

    Article  CAS  PubMed  Google Scholar 

  14. Cone, R. A. (2009) Barrier properties of mucus. Adv. Drug Deliv. Rev. 61: 75–85.

    Article  CAS  PubMed  Google Scholar 

  15. Fahy, J. V. and B. F. Dickey (2010) Airway mucus function and dysfunction. N. Engl. J. Med. 363: 2233–2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hogg, J. C. (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 364: 709–721.

    Article  PubMed  Google Scholar 

  17. Randell, S. H. and R. C. Boucher (2006) Effective mucus clearance is essential for respiratory health. Am. J. Respir. Cell Mol. Biol. 35: 20–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka, T. and D. J. Fillmore (1979) Kinetics of swelling of gels. J. Chem. Phys. 70: 1214–1218.

    Article  CAS  Google Scholar 

  19. Verdugo, P. (1990) Goblet cells secretion and mucogenesis. Annu. Rev. Physiol. 52: 157–176.

    Article  CAS  PubMed  Google Scholar 

  20. Berger, J. T., J. A. Voynow, K. W. Peters, and M. C. Rose (1999) Respiratory carcinoma cell lines — MUC genes and glycoconjugates. Am. J. Respir. Cell Mol. Biol. 20: 500–510.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, E. Y. T., N. Yang, P. M. Quinton, and W. C. Chin (2010) A new role for bicarbonate in mucus formation. Am. J. Physiol Lung Cell Mol. Physiol. 299: L542–L549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao, Z., M. Daly, L. Clémence, L. M. Geever, I. Major, C. L. Higginbotham, and D. M. Devine (2016) Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Appl. Surf. Sci. 378: 320–329.

    Article  CAS  Google Scholar 

  23. Chen, E. Y. T., M. Garnica, Y. C. Wang, C. S. Chen, and W. C. Chin (2011) Mucin secretion induced by titanium dioxide nanoparticles. PLoS One. 6: e16198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwab, J. A. and M. Zenkel (1998) Filtration of particulates in the human nose. Laryngoscope. 108: 120–124.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai, S. M., E. Duran-Robles, T. Goshia, M. Mesina, C. Garcia, J. Young, A. Sibal, M. H. Chiu, and W. C. Chin (2018) CeO2 nanoparticles attenuate airway mucus secretion induced by TiO2 nanoparticles. Sci. Total Environ. 631–632: 262–269.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Espinosa, M., G. Noé, C. Troncoso, S. B. Ho, and M. Villalón (2002) Acidic pH and increasing [Ca2+] reduce the swelling of mucins in primary cultures of human cervical cells. Hum. Reprod. 17: 1964–1972.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, E. Y. T., Y. C. Wang, C. S. Chen, and W. C. Chin (2010) Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS One. 5: e15434.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rom, W. N. and J. M. Samet (2006) Small particles with big effects. Am. J. Respir. Crit. Care Med. 173: 365–366.

    Article  PubMed  Google Scholar 

  29. Hetland, R. B., P. E. Schwarze, B. V. Johansen, T. Myran, N. Uthus, and M. Refsnes (2001) Silica-induced cytokine release from A549 cells: Importance of surface area versus size. Hum. Exp. Toxicol. 20: 46–55.

    Article  CAS  PubMed  Google Scholar 

  30. Ovrevik, J., M. Refsnes, E. Namork, R. Becher, D. Sandnes, P. E. Schwarze, and M. Lag (2006) Mechanisms of silica-induced IL-8 release from A549 cells: initial kinase-activation does not require EGFR activation or particle uptake. Toxicology. 227: 105–116.

    Article  CAS  PubMed  Google Scholar 

  31. Vuong, N. Q., P. Goegan, F. De Rose, D. Breznan, E. M. Thomson, J. S. O’Brien, S. Karthikeyan, A. Williams, R. Vincent, and P. Kumarathasan (2017) Responses of A549 human lung epithelial cells to cristobalite and alpha-quartz exposures assessed by toxicoproteomics and gene expression analysis. J. Appl. Toxicol. 37: 721–731.

    Article  CAS  PubMed  Google Scholar 

  32. Corsini, E., S. Budello, L. Marabini, V. Galbiati, A. Piazzalunga, P. Barbieri, S. Cozzutto, M. Marinovich, D. Pitea, and C. L. Galli (2013) Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Arch. Toxicol. 87: 2187–2199.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, E. Y., A. Sun, C. S. Chen, A. J. Mintz, and W. C. Chin (2014) Nicotine alters mucin rheological properties. Am. J. Physiol. Lung. Cell Mol. Physiol. 307: L149–L157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Edwards, S. F. and J. W. V. Grant (1973) The effect of entanglements of diffusion in a polymer melt. J. Phys. A: Math. Nucl. Gen. 6: 1169.

    Article  CAS  Google Scholar 

  35. Edwards, S. F. and J. W. V. Grant (1973) The effect of entanglements on the viscosity of a polymer melt. J. Phys. A: Math. Nucl. Gen. 6: 1186.

    Article  CAS  Google Scholar 

  36. Lodge, T. P. (1999) Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Phys. Rev. Lett. 83: 3218–3221.

    Article  CAS  Google Scholar 

  37. Verdugo, P. (1984) Hydration kinetics of exocytosed mucins in cultured secretory cells of the rabbit trachea: A new model. Ciba Found. Symp. 109: 212–225.

    CAS  PubMed  Google Scholar 

  38. Lin, V. Y., N. Kaza, S. E. Birket, H. Kim, L. J. Edwards, J. LaFontaine, L. Liu, M. Mazur, S. A. Byzek, J. Hanes, G. J. Tearney, S. V. Raju, and S. M. Rowe (2020) Excess mucus viscosity and airway dehydration impact COPD airway clearance. Eur. Respir. J. 55: 1900419.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pruitt, B. and M. Jacobs (2005) Clearing away pulmonary secretions. Nursing. 35: 36–41.

    Article  PubMed  Google Scholar 

  40. Rogers, D. F. (2007) Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir. Care. 52: 1134–1146.

    PubMed  Google Scholar 

  41. Verdugo, P., M. Aitken, L. Langley, and M. J. Villalon (1987) Molecular mechanism of product storage and release in mucin secretion. II. The role of extracellular Ca++. Biorheology. 24: 625–633.

    Article  CAS  PubMed  Google Scholar 

  42. Hughes, G. W., C. Ridley, R. Collins, A. Roseman, R. Ford, and D. J. Thornton (2019) The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH. Sci. Rep. 9: 17350.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Verdugo, P., I. Deyrup-Olsen, M. Aitken, M. Villalon, and D. Johnson (1987) Molecular mechanism of mucin secretion: I. The role of intragranular charge shielding. J. Dent. Res. 66: 506–508.

    Article  CAS  PubMed  Google Scholar 

  44. Zanin, M., P. Baviskar, R. Webster, and R. Webby (2016) The interaction between respiratory pathogens and mucus. Cell Host Microbe. 19: 159–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horie, M., K. Nishio, H. Kato, S. Endoh, K. Fujita, A. Nakamura, S. Kinugasa, Y. Hagihara, Y. Yoshida, and H. Iwahashi (2014) Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chem. Biol. Interact. 210: 64–76.

    Article  CAS  PubMed  Google Scholar 

  46. Tabei, Y., S. Sugino, K. Eguchi, M. Tajika, H. Abe, Y. Nakajima, and M. Horie (2017) Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages. Biochem. Biophys. Res. Commun. 490: 499–505.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, A., D. Song, X. He, L. Dou, Z. Li, Z. Zu, Q. Lou, and Y. Zhao (2019) Investigation of coal and gas outburst risk by microseismic monitoring. PLoS One. 14: e0216464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, Q. and K. Xu (2018) Mine safety assessment using gray relational analysis and bow tie model. PLoS One. 13: e0193576.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J., J. Fu, H. Hao, G. Fu, F. Nie, and W. Zhang (2020) Root causes of coal mine accidents: Characteristics of safety culture deficiencies based on accident statistics. Process Saf. Environ. Prot. 136: 78–91.

    Article  CAS  Google Scholar 

  50. Chen, Y. C., C. H. Lin, S. C. C. Lung, K. F. Chen, W. C. V. Wang, C. T. Chou, and C. H. Lai (2019) Environmental concentration of spray paint particulate matters causes pulmonary dysfunction in human normal bronchial epithelial BEAS-2B cell. Process Saf. Environ. Prot. 126: 250–258.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (ALPHA FOUNDATION). The views, opinions, and recommendations expressed herein are solely those of the authors and do not imply any endorsement by the ALPHA FOUNDATION, the directors, or staff. We also would like to thank Dr. Liying Zhao from the Environmental Analytical Laboratory, UC Merced for help with Inductively Coupled Plasma Optical Emission Spectrometer.

Author information

Authors and Affiliations

Authors

Contributions

Y. T. designed the research, performed experiments, analyzed data and drafted the manuscript, C. I. V. performed experiments, analyzed data and drafted the manuscript. R. S. designed the research, performed experiments, analyzed data and drafted/edited the manuscript. A. K. G. performed experiments and drafted the manuscript. C. L. and P. P. performed experiments. M. S. performed experiments, analyzed data and wrote a section of the manuscript. W. C. helped in providing the ideas, funds, and conceived and designed the research and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wei-Chun Chin.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Declaration of Competing Interest

Dr. Wei-Chun Chin (corresponding author) is a member of the editorial board of Biotechnology and Bioprocess Engineering, this does not alter the authors’ adherence to all the Biotechnology and Bioprocess Engineering policies on sharing data and materials. Other authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YY., Vazquez, C.I., Shiu, RF. et al. Effects of Rock Dust Particles on Airway Mucus Viscosity. Biotechnol Bioproc E 26, 427–434 (2021). https://doi.org/10.1007/s12257-020-0236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0236-x

Keywords

Navigation