Skip to main content
Log in

Exploiting the Reversibility of GTBP1 Catalyzed One-pot Reactions for the Synergistical Synthesis of Ponasterone A and Phenolic Glycosides

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the process of glycosyltransferase-catalyzed transglycosylation, the synthesis of uridine diphosphate sugars is generally thermodynamically disfavored. This study found that GTBP1 from Bacillus pumilus BF1 displayed the potential to reversely synthesize uridine diphosphate glucose (UDPG, UDP-glucose), which catalyzed the deglycosylation of ponasteroside A and the transglycosylation of phenolic compounds in one-pot reaction. Sequence alignment and phylogenetic tree analysis of GTBP1 and other GTs with reversible glycosylation ability were also implemented. Using solvent engineering strategy, the reaction time in water-organic biphasic was shortened and the conversion was improved. The final conversion of ponasterone A was reached 93.4%, and the final yield of ferulic acid glycoside was 92.7%. Using the fed-batch technology with the coupled reaction, the cumulative product of ponasterone A was about 1.97 g/L, and the level of produced ferulic acid glycoside was about 1.52 g/L. The substrate specificity of the GTBP1 was also confirmed. It implies the diversity of GTBP1’s ability to construct UDP cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elshahawi, S. I., K. A. Shaaban, M. K. Kharel, and J. S. Thorson (2015) A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44: 7591–7697.

    Article  CAS  Google Scholar 

  2. Jones, P. and T. Vogt (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta. 213: 164–174.

    Article  CAS  Google Scholar 

  3. Gantt, R. W., P. Peltier-Pain, and J. S. Thorson (2011) Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat. Prod. Rep. 28: 1811–1853.

    Article  CAS  Google Scholar 

  4. Williams, G. J., R. W. Gantt, and J. S. Thorson (2008) The impact of enzyme engineering upon natural product glycodiversification. Curr. Opin. Chem. Biol. 12: 556–564.

    Article  CAS  Google Scholar 

  5. De Bruyn, F., J. Maertens, J. Beauprez, W. Soetaert, and M. De Mey (2015) Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol. Adv. 33: 288–302.

    Article  CAS  Google Scholar 

  6. Dai, L., J. Li, P. Yao, Y. Zhu, Y. Men, Y. Zeng, J. Yang, and Y. Sun (2017) Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides. J. Biotechnol. 248: 69–76.

    Article  CAS  Google Scholar 

  7. And, K. M. and C. H. Wong (2000) Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem. Rev. 100: 4465–4494.

    Article  Google Scholar 

  8. Ahlert, J., E. Shepard, N. Lomovskaya, E. Zazopoulos, A. Staffa, B. O. Bachmann, K. Huang, L. Fonstein, A. Czisny, R. E. Whitwam, C. M. Farnet, and J. S. Thorson (2002) The calicheamicin gene cluster and its iterative type I enediyne PKS. Science. 297: 1173–1176.

    Article  CAS  Google Scholar 

  9. Losey, H. C., M. W. Peczuh, Z. Chen, U. S. Eggert, S. D. Dong, I. Pelczer, D. Kahne, and C. T. Walsh (2001) Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: Novel Glycopeptides†,‡. Biochemistry. 40: 4745–4755.

    Article  CAS  Google Scholar 

  10. Zhang, C., B. R. Griffith, Q. Fu, C. Albermann, X. Fu, I. K. Lee, L. Li, and J. S. Thorson (2006) Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science. 313: 1291–1294.

    Article  CAS  Google Scholar 

  11. Liang, D. M., J. H. Liu, H. Wu, B. B. Wang, H. J. Zhu, and J. J. Qiao (2015) Glycosyltransferases: mechanisms and applications in natural product development. Chem. Soc. Rev. 44: 8350–8374.

    Article  CAS  Google Scholar 

  12. Zhang, C., Q. Fu, C. Albermann, L. Li, and J. S. Thorson (2007) The in vitro characterization of the erythronolide mycarosyltransferase erybv and its utility in macrolide diversification. ChemBioChem. 8: 385–390.

    Article  CAS  Google Scholar 

  13. Minami, A., K. Kakinuma, and T. Eguchi (2005) Aglycon switch approach toward unnatural glycosides from natural glycoside with glycosyltransferase VinC. Tetrahedron Lett. 46: 6187–6190.

    Article  CAS  Google Scholar 

  14. Zhang, C., C. Albermann, X. Fu, and J. S. Thorson (2006) The in vitro characterization of the iterative avermectin glycosyltransferase AveBI reveals reaction reversibility and sugar nucleotide flexibility. J. Am. Chem. Soc. 128: 16420–16421.

    Article  CAS  Google Scholar 

  15. Zhang, C., R. Moretti, J. Jiang, and J. S. Thorson (2008) The in vitro characterization of polyene glycosyltransferases AmphDI and NysDI. ChemBioChem. 9: 2506–2514.

    Article  CAS  Google Scholar 

  16. Zhang, C., E. Bitto, R. D. Goff, S. Singh, C. A. Bingman, B. R. Griffith, C. Albermann, G. N. Phillips, and J. S. Thorson (2008) Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. Chem. Biol. 15: 842–853.

    Article  CAS  Google Scholar 

  17. Isiorho, E. A., B. S. Jeon, N. H. Kim, H. Liu, and A. T. Keatinge-Clay (2014) Structural studies of the spinosyn forosaminyltransferase, SpnP. Biochemistry. 53: 4292–4301.

    Article  CAS  Google Scholar 

  18. Chen, R., H. Zhang, G. Zhang, S. Li, G. Zhang, Y. Zhu, J. Liu, and C. Zhang (2013) Characterizing amosamine biosynthesis in amicetin reveals AmiG as a reversible retaining glycosyltransferase. J. Am. Chem. Soc. 135: 12152–12155.

    Article  CAS  Google Scholar 

  19. Bolam, D. N., S. Roberts, M. R. Proctor, J. P. Turkenburg, E. J. Dodson, C. Martinez-Fleites, M. Yang, B. G. Davis, G. J. Davies, and H. J. Gilbert (2007) The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc. Natl Acad. Sci. USA. 104: 5336–5341.

    Article  CAS  Google Scholar 

  20. Gantt, R. W., P. Peltier-Pain, W. J. Cournoyer, and J. S. Thorson (2011) Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat. Chem. Biol. 7: 685–691.

    Article  CAS  Google Scholar 

  21. Yonekura-Sakakibara, K. and K. Saito (2009) Functional genomics for plant natural product biosynthesis. Nat. Prod. Rep. 26: 1466–1487.

    Article  CAS  Google Scholar 

  22. Pandey, R. P., P. Bashyal, P. Parajuli, T. Yamaguchi, and J. K. Sohng (2019) Two trifunctional leloir glycosyltransferases as biocatalysts for natural products glycodiversification. Org. Lett. 21: 8058–8064.

    Article  CAS  Google Scholar 

  23. Kren, V. and L. Martinkova (2001) Glycosides in medicine: “The role of glycosidic residue in biological activity”. Curr. Med. Chem. 8: 1303–1328.

    Article  CAS  Google Scholar 

  24. Desmet, T., W. Soetaert, P. Bojarova, V. Křen, L. Dijkhuizen, V. Eastwick-Field, and A. Schiller (2012) Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chem. Eur. J. 18: 10786–10801.

    Article  CAS  Google Scholar 

  25. Murota, K., N. Matsuda, Y. Kashino, Y. Fujikura, T. Nakamura, Y. Kato, R. Shimizu, S. Okuyama, H. Tanaka, T. Koda, K. Sekido, and J. Terao (2010) α-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 501: 91–97.

    Article  CAS  Google Scholar 

  26. Li, B., X. He, S. Zhang, S. Chang, and B. He (2018) Efficient synthesis of 4-O-β-d-glucopyranosylferulic acid from ferulic acid by whole cells harboring glycosyltransferase GTBP1. Biochem. Eng. J. 130: 99–103.

    Article  CAS  Google Scholar 

  27. Xu, L., T. Qi, L. Xu, L. Lu, and M. Xiao (2016) Recent progress in the enzymatic glycosylation of phenolic compounds. J. Carbohydr. Chem. 35: 1–23.

    Article  Google Scholar 

  28. Jiang, J., S. Yuan, J. Ding, S. Zhu, H. Xu, T. Chen, X. Cong, W. Xu, H. Ye, and Y. Dai (2008) Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647–657.

    Article  CAS  Google Scholar 

  29. Nishimura, T., T. Kometani, H. Takii, Y. Terada, and S. Okada (1995) Glucosylation of caffeic acid with Bacillus subtilis X-23 α-amylase and a description of the glucosides. J. Ferment. Bioeng. 80: 18–23.

    Article  CAS  Google Scholar 

  30. Torres, P., A. Poveda, J. Jimenez-Barbero, J. L. Parra, F. Comelles, A. O. Ballesteros, and F. J. Plou (2011) Enzymatic synthesis of α-glucosides of resveratrol with surfactant activity. Adv. Synth. Catal. 353: 1077–1086.

    Article  CAS  Google Scholar 

  31. Bakondi, E., S. B. Singh, Z. Hajnady, M. Nagy-Penzes, Z. Regdon, K. Kovacs, C. Hegedűs, T. Madacsy, J. Maleth, P. Hegyi, M. Á. Demény, T. Nagy, S. Kéki, É. Szabó, and L. Virág (2019) Spilanthol inhibits inflammatory transcription factors and iNOS expression in macrophages and exerts anti-inflammatory effects in dermatitis and pancreatitis. Int. J. Mol. Sci. 20: 4308.

    Article  CAS  Google Scholar 

  32. Xiao, Y., M. A. Beilstein, M. Wang, J. Purintrapiban, and N. E. Forsberg (2003) Development of a ponasterone A-inducible gene expression system for application in cultured skeletal muscle cells. Int. J. Biochem. Cell Biol. 35: 79–85.

    Article  CAS  Google Scholar 

  33. Li, B., X. He, B. Fan, J. Chu, and B. He (2017) Efficient synthesis of ponasterone A by recombinant Escherichia coli harboring the glycosyltransferase GTBP1 with in situ product removal. RSC Adv. 7: 23027–23029.

    Article  CAS  Google Scholar 

  34. Wu, P., H. Xie, W. Tao, S. Miao, and X. Wei (2010) Phytoecdysteroids from the rhizomes of Brainea insignis. Phytochemistry. 71: 975–981.

    Article  CAS  Google Scholar 

  35. Gutmann, A., L. Bungaruang, H. Weber, M. Leypold, R. Breinbauer, and B. Nidetzky (2014) Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chem. 16: 4417–4425.

    Article  CAS  Google Scholar 

  36. Sun, H., B. He, J. Xu, B. Wu, and P. Ouyang (2011) Efficient chemo-enzymatic synthesis of endomorphin-1 using organic solvent stable proteases to green the synthesis of the peptide. Green Chem. 13: 1680–1685.

    Article  CAS  Google Scholar 

  37. Quiros, L. M., R. J. Carbajo, A. F. Brana, and J. A. Salas (2000) Glycosylation of macrolide antibiotics. Purification and kinetic studies of a macrolide glycosyltransferase from Streptomyces antibioticus. J. Biol. Chem. 275: 11713–11720.

    Article  CAS  Google Scholar 

  38. Odinokov, V. N., R. G. Savchenko, S. R. Nazmeeva, I. V. Galyautdinov, and L. M. Khalilov (2002) Ozonolysis of alkenes and study of reactions of polyfunctional compounds: LXVI.2* ozonolysis and hydrogenation of diacetonides of 24,25- and 25,26-anhydro-20-hydroxyecdysones. Synthesis of ponasterone A. Russ. J. Org. Chem. 38: 525–529.

    Article  CAS  Google Scholar 

  39. Katsuragi, H., K. Shimoda, N. Kubota, N. Nakajima, H. Hamada, and H. Hamada (2010) Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana. Biosci. Biotechnol. Biochem. 74: 1920–1924.

    Article  CAS  Google Scholar 

  40. Ma, W., L. Zhao., Y. Ma, Y. Li., S. Qin., and B. He (2020) Oriented efficient biosynthesis of rare ginsenoside Rh2 from PPD by compiling UGT-Yjic mutant with sucrose synthase. Int. J. Biol. Macromol. 146: 853–859.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2018YFA0902000), National Natural Science Foundation of China (81673321, 21776135, 21506099), Natural Science Foundation of Jiangsu province (Grant No. BK20181379). We also thank the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (NO. XTE1854 and NO. XTC1812). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlin Chu or Bingfang He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, B., Chen, T. et al. Exploiting the Reversibility of GTBP1 Catalyzed One-pot Reactions for the Synergistical Synthesis of Ponasterone A and Phenolic Glycosides. Biotechnol Bioproc E 26, 408–418 (2021). https://doi.org/10.1007/s12257-020-0135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0135-1

Keywords

Navigation