Skip to main content
Log in

Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Utilization of bone graft substitutes have increased due to the rising number of accidents, trauma, and aging population. Autograft is still considered as a gold standard for treating bone defects. However, limitations such as insufficient donor sites and secondary surgery, leads to the development of alternative grafts. Hydroxyapatite (HA) from natural resources gained much attention in recent years as a bone graft substitute due to its biocompatibility, excellent osteointegration, osteoconductive, and osteoinductive properties. In the current review, we have presented the isolation procedures of HA from marine fishbone and cuttlefish bone. Further, composite preparation using marine derived HA with other polymeric and ceramic materials were discussed, and cell-materials interaction were reviewed in detail towards bone tissue construction. Composite biomaterials with HA showed better cell proliferation, cell adhesion, increased gene expression (collagen, osteocalcin, osteopontin, bone sialoprotein, BMP-2 etc.), and in vivo studies demonstrated significant bone formation with HA composite materials. Hence, composite biomaterials with hydroxyapatite will be potential candidates for artificial synthetic bone graft substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, W. and K. W. K. Yeung (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2: 224–247.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kinaci, A., V. Neuhaus, and D. C. Ring (2014) Trends in bone graft use in the United States. Orthopedics. 37: e783–e788.

    Article  PubMed  Google Scholar 

  3. Giannoudis, P. V., H. Dinopoulos, and E. Tsiridis (2005) Bone substitutes: an update. Injury. 36Suppl 3: S20–S27.

    Article  PubMed  Google Scholar 

  4. Weiner, S. and H. D. Wagner (1998) The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28: 271–298.

    Article  CAS  Google Scholar 

  5. Rho, J. Y., L. Kuhn-Spearing, and P. Zioupos (1998) Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20: 92–102.

    Article  CAS  PubMed  Google Scholar 

  6. Fathi, M. H. and A. Hanifi (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple solgel method. Mater. Lett. 61: 3978–3983.

    Article  CAS  Google Scholar 

  7. Liu, J., X. Ye, H. Wang, M. Zhu, B. Wang, and H. Yan (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29: 629–633.

    Article  CAS  Google Scholar 

  8. Kong, L. B., J. Ma, and F. Boey (2002) Nanosized hydroxyapatite powders derived from coprecipitation process. J. Mater. Sci. 37: 1131–1134.

    Article  CAS  Google Scholar 

  9. Toriyama, M., A. Ravaglioli, A. Krajewski, G. Celotti, and A. Piancastelli (1996) Synthesis of hydroxyapatite-based powders by mechano-chemical method and their sintering. J. Eur. Ceram. Soc. 16: 429–436.

    Article  CAS  Google Scholar 

  10. Mallick, S. P., Z. Beyene, D. K. Suman, A. Madhual, B. N. Singh, and P. Srivastava (2019) Strategies towards orthopaedic tissue engineered graft generation: Current scenario and application. Biotechnol. Bioprocess Eng. 24: 854–869.

    Article  CAS  Google Scholar 

  11. Awad, H. A., R. J. O’Keefe, C. H. Lee, and J. J. Mao (2014) Chapter 83 — Bone tissue engineering: Clinical challenges and emergent advances in orthopedic and craniofacial surgery. pp. 1733–1743. In: R. Lanza, R. Langer, and J. Vacanti (eds.). Principles of Tissue Engineering. Academic Press. Boston, MA, USA.

    Chapter  Google Scholar 

  12. Place, E. S., N. D. Evans, and M. M. Stevens (2009) Complexity in biomaterials for tissue engineering. Nat. Mater. 8: 457–470.

    Article  CAS  PubMed  Google Scholar 

  13. Njinkoue, J. M., I. Gouado, F. Tchoumbougnang, J. H. Y. Ngueguim, D. T. Ndinteh, C. Y. Fomogne-Fodjo, and F. J. Schweigert (2016) Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825). NFS J. 4: 27–31.

    Article  Google Scholar 

  14. Venkatesan, J., B. Lowe, P. Manivasagan, K. H. Kang, E. P. Chalisserry, S. Anil, D. G. Kim, and S. K. Kim (2015) Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials (Basel). 8: 5426–5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goto, T. and K. Sasaki (2014) Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceram. Int. 40: 10777–10785.

    Article  CAS  Google Scholar 

  16. Venkatesan, J. and S. K. Kim (2015) Marine biomaterials. pp. 1195–1215. In: S. K. Kim (ed.). Springer Handbook of Marine Biotechnology. Springer-Verlag, Berlin, Heidelberg, Germany.

    Chapter  Google Scholar 

  17. Ben-Nissan, B., A. H. Choi, and D. W. Green (2019) Marine derived biomaterials for bone regeneration and tissue engineering: Learning from nature. pp. 51–78. In: A. H. Choi and B. Ben-Nissan (eds.). Marine-Derived Biomaterials for Tissue Engineering Applications. Springer, Singapore, Singapore.

    Chapter  Google Scholar 

  18. Piccirillo, C., M. F. Silva, R. C. Pullar, I. Braga da Cruz, R. Jorge, M. M. E. Pintado, and P. M. L. Castro (2013) Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C Mater. Biol. Appl. 33: 103–110.

    Article  CAS  PubMed  Google Scholar 

  19. Sunil, B. R. and M. Jagannatham (2016) Producing hydroxyapatite from fish bones by heat treatment. Mater. Lett. 185: 411–414.

    Article  CAS  Google Scholar 

  20. Piccirillo, C., R. C. Pullar, D. M. Tobaldi, P. M. L. Castro, and M. M. E. Pintado (2014) Hydroxyapatite and chloroapatite derived from sardine by-products. Ceram. Int. 40: 13231–13240.

    Article  CAS  Google Scholar 

  21. Teixeira, M. A. C., C. Piccirillo, D. M. Tobaldi, R. C. Pullar, J. A. Labrincha, M. O. Ferreira, P. M. L. Castro, and M. M. E. Pintado (2017) Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen. Mater. Sci. Eng. C Mater. Biol. Appl. 71: 141–149.

    Article  Google Scholar 

  22. Komur, B., E. Altun, M. O. Aydogdu, D. Bilgiç, H. Gokce, N. Ekren, S. Salman, A. T. Inan, F. N. Oktar, and O. Gunduz (2017) Hydroxyapatite synthesis from fish bones: Atlantic salmon (Salmon Salar). Acta Phys. Pol. A. 131: 400–402.

    Article  CAS  Google Scholar 

  23. Kim, B. S., H. J. Kang, S. S. Yang, and J. Lee (2014) Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed. Mater. 9: 025004.

    Article  CAS  PubMed  Google Scholar 

  24. Kongsri, S., K. Janpradit, K. Buapa, S. Techawongstien, and S. Chanthai (2013) Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216: 522–532.

    Article  Google Scholar 

  25. Vecchio, K. S., X. Zhang, J. B. Massie, M. Wang, and C. W. Kim (2007) Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 3: 910–918.

    Article  CAS  PubMed  Google Scholar 

  26. Chou, J., B. Ben-Nissan, A. H. Choi, R. Wuhrer, and D. Green (2007) Conversion of coral sand to calcium phosphate for biomedical applications. J. Aust. Ceram. Soc. 43: 44–48.

    CAS  Google Scholar 

  27. Lowe, B., J. Venkatesan, S. Anil, M. S. Shim, and S. K. Kim (2016) Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 93: 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  28. Muhammad, N., Y. Gao, F. Iqbal, P. Ahmad, R. Ge, U. Nishan, A. Rahim, G. Gonfa, and Z. Ullah (2016) Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment. Sep. Purif. Technol. 161: 129–135.

    Article  CAS  Google Scholar 

  29. Piccirillo, C., R. C. Pullar, E. Costa, A. Santos-Silva, M. M. E. Pintado, and P. M. L. Castro (2015) Hydroxyapatite-based materials of marine origin: a bioactivity and sintering study. Mater. Sci. Eng. C Mater. Biol. Appl. 51: 309–315.

    Article  CAS  PubMed  Google Scholar 

  30. Chattanathan, S. A., T. P. Clement, S. R. Kanel, M. O. Barnett, and N. Chatakondi (2013) Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Water Air Soil Pollut. 224: 1429.

    Article  Google Scholar 

  31. Clarke, S. A., S. Y. Choi, M. McKechnie, G. Burke, N. Dunne, G. Walker, E. Cunningham, and F. Buchanan (2016) Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. J. Mater. Sci. Mater. Med. 27: 22.

    Article  CAS  PubMed  Google Scholar 

  32. Haberko, K., M. M. Bućko, J. Brzezińska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zarębski (2006) Natural hydroxyapatite-its behaviour during heat treatment. J. Eur. Ceram. Soc. 26: 537–542.

    Article  CAS  Google Scholar 

  33. Granito, R. N., A. C. Muniz Renno, H. Yamamura, M. C. de Almeida, P. L. Menin Ruiz, and D. A. Ribeiro (2018) Hydroxyapatite from fish for bone tissue engineering: A promising approach. Int. J. Mol. Cell. Med. 7: 80–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Terzioglu, P., H. Ogut, and A. Kalemtas (2018) Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 91: 899–911.

    Article  CAS  PubMed  Google Scholar 

  35. Admassu, W. and T. Breese (1999) Feasibility of using natural fishbone apatite as a substitute for hydroxyapatite in remediating aqueous heavy metals. J. Hazard. Mater. 69: 187–196.

    Article  CAS  PubMed  Google Scholar 

  36. Pon-On, W., P. Suntornsaratoon, N. Charoenphandhu, J. Thongbunchoo, N. Krishnamra, and I. M. Tang (2016) Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater. Sci. Eng. C Mater. Biol. Appl. 62: 183–189.

    Article  CAS  PubMed  Google Scholar 

  37. Boutinguiza, M., J. Pou, R. Comesaña, F. Lusquiños, A. De Carlos, and B. León (2012) Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C Mater. Biol. Appl. 32: 478–486.

    Article  CAS  Google Scholar 

  38. Ozawa, M. and S. Suzuki (2002) Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. J. Am. Ceram. Soc. 85: 1315–1317.

    Article  CAS  Google Scholar 

  39. Ozawa, M. and S. Kanahara (2005) Removal of aqueous lead by fish-bone waste hydroxyapatite powder. J. Mater. Sci. 40: 1037–1038.

    Article  CAS  Google Scholar 

  40. Rocha, J. H. G., A. F. Lemos, S. Agathopoulos, P. Valerio, S. Kannan, F. N. Oktar, and J. M. F. Ferreira (2005) Scaffolds for bone restoration from cuttlefish. Bone. 37: 850–857.

    Article  CAS  PubMed  Google Scholar 

  41. Shavandi, A., A. E. D. A. Bekhit, A. Ali, and Z. Sun (2015) Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater. Chem. Phys. 149–150: 607–616.

    Article  Google Scholar 

  42. El-Bassyouni, G. T., S. S. Eldera, S. H. Kenawy, and E. M. A. Hamzawy (2020) Hydroxyapatite nanoparticles derived from mussel shells for in vitro cytotoxicity test and cell viability. Heliyon. 6: e04085.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lim, S., Y. S. Choi, D. G. Kang, Y. H. Song, and H. J. Cha (2010) The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials. 31: 3715–3722.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou, Y. Z., Y. Cao, W. Liu, C. H. Chu, and Q. L. Li (2012) Polydopamine-induced tooth remineralization. ACS Appl. Mater. Interfaces. 4: 6901–6910.

    Article  CAS  PubMed  Google Scholar 

  45. Ryu, J., S. H. Ku, H. Lee, and C. B. Park (2010) Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv. Funct. Mater. 20: 2132–2139.

    Article  CAS  Google Scholar 

  46. Pamungkas, A., R. Dhelika, and A. S. Saragih (2019) Synthesis of hydroxyapatite from Tenggiri (Scomberomorus eommersonii) fish bone: Findings on experiment and processes. AIP Conf. Proc. 2092: 020034.

    Article  Google Scholar 

  47. Sihotang, M. S., P. Sinuhaji, and D. Aisyah (2019) Synthesis and characterization of pure natural hydroxyapatite from fishbone biowaste of coastal communities. IOP Conf. Ser. Earth Environ. Sci. 305: 012072.

    Article  Google Scholar 

  48. Jahangir, M. U., F. Islam, R. A. Jahan, M. A. Matin, and M. T. Arafat (2018) Thermal synthesis of hydroxyapatite from fish bones. AIP Conf. Proc. 2121: 140012.

    Article  Google Scholar 

  49. Cahyanto, A., E. Kosasih, D. Aripin, and Z. Hasratiningsih (2017) Fabrication of hydroxyapatite from fish bones waste using reflux method. IOP Conf. Ser. Mater. Sci. Eng. 172: 012006.

    Article  Google Scholar 

  50. Zhang, L., C. Zhang, R. Zhang, D. Jiang, Q. Zhu, and S. Wang (2019) Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish. Mater. Lett. 236: 680–682.

    Article  CAS  Google Scholar 

  51. Kara, K., F. Ouanji, E. M. Lotfi, M. El Mahi, and M. Kacimi (2019) Valorization of a good bioceramic from Moroccan waste fish bone by a heat treatment method. J. Renew. Mater. 7: 1–7.

    Article  Google Scholar 

  52. Pal, A., S. Paul, A. R. Choudhury, V. K. Balla, M. Das, and A. Sinha (2017) Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater. Lett. 203: 89–92.

    Article  CAS  Google Scholar 

  53. Gunduz, O., O. Kilic, N. Ekren, H. Gokce, C. Kalkandelen, and F. N. Oktar (2017) Natural hydroxyapatite synthesis from fish bones: “Atlantic Bonito” (Sarda sarda). Key Eng. Mater. 720: 207–209.

    Article  Google Scholar 

  54. Prabakaran, K. and S. Rajeswari (2006) Development of hydroxyapatite from natural fish bone through heat treatment. Trends Biomater. Artif. Organs. 20: 20–23.

    Google Scholar 

  55. Nam, P. V., N. V. Hoa, and T. S. Trung (2019) Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceram. Int. 45: 20141–20147.

    Article  CAS  Google Scholar 

  56. Mondal, S., G. Hoang, P. Manivasagan, M. S. Moorthy, H. H. Kim, T. T. Vy Phan, and J. Oh (2019) Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Mater. Chem. Phys. 228: 344–356.

    Article  CAS  Google Scholar 

  57. Venkatesan, J., Z. J. Qian, B. Ryu, N. V. Thomas, and S. K. Kim (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed. Mater. 6: 035003.

    Article  PubMed  Google Scholar 

  58. Pallela, R., J. Venkatesan, and S. K. Kim (2011) Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone. Ceram. Int. 37: 3489–3497.

    Article  CAS  Google Scholar 

  59. Iqbal, F. and N. Muhammad (2017) Extraction of hydroxyapatite from fish scales employing ionic liquids. US Patents 9,758,377 B2.

  60. Faksawat, K., W. Kaewwiset, P. Limsuwan, and K. Naemchanthara (2017) Comparison of characteristics of hydroxyapatite powders synthesized from cuttlefish bone via precipitation and ball milling techniques. J. Phys. Conf. Ser. 901: 012083.

    Article  Google Scholar 

  61. Reinares-Fisac, D., S. Veintemillas-Verdaguer, and L. Fernández-Díaz (2017) Conversion of biogenic aragonite into hydroxyapatite scaffolds in boiling solutions. CrystEngComm. 19: 110–116.

    Article  CAS  Google Scholar 

  62. Li, X., X. Shang, H. Kong, Z. Wei, X. Yu, Z. Liu, Y. Cao, and J. Wang (2016) Synthesis of hydroxyapatite from cuttlefish bone via hydrothermal solid-state conversion. J. Biomater. Tissue Eng. 6: 775–779.

    Article  Google Scholar 

  63. Hongmin, L., Z. Wei, Y. Xingrong, W. Jing, G. Wenxin, C. Jihong, X. Xin, and C. Fulin (2015) Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J. Biomed. Mater. Res. B Appl. Biomater. 103: 816–824.

    Article  PubMed  Google Scholar 

  64. Ivankovic, H., E. Tkalcec, S. Orlic, G. Gallego Ferrer, and Z. Schauperl (2010) Hydroxyapatite formation from cuttlefish bones: kinetics. J. Mater. Sci. Mater. Med. 21: 2711–2722.

    Article  CAS  PubMed  Google Scholar 

  65. Rocha, J. H. G., A. F. Lemos, S. Kannan, S. Agathopoulos, and J. M. F. Ferreira (2005) Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J. Mater. Chem. 15: 5007–5011.

    Article  CAS  Google Scholar 

  66. Ivankovic, H., G. Gallego Ferrer, E. Tkalcec, S. Orlic, and M. Ivankovic (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J. Mater. Sci. Mater. Med. 20: 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  67. Lee, S. J., M. H. Lee, W. M. Kriven, and N. S. Oh (2010) Sintering behavior and biocompatibility of calcium phosphates fabricated by cuttlefish bone and phosphoric acid. Tissue Eng. Regen. Med. 7: 556–560.

    CAS  Google Scholar 

  68. Tkalcec, E., J. Popovic, S. Orlic, S. Milardovic, and H. Ivankovic (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater. Sci. Eng. C Mater. Biol. Appl. 42: 578–586.

    Article  CAS  PubMed  Google Scholar 

  69. Kannan, S., J. H. G. Rocha, S. Agathopoulos, and J. M. F. Ferreira (2007) Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 3: 243–249.

    Article  CAS  PubMed  Google Scholar 

  70. Aminatun, Siswanto, Y. M. Penga, Istifarah, and R. Apsari (2013) The effect of sintering process on the characteristics of hydroxyapatite from cuttlefish bone (Sepia sp.). Res. J. Pharm. Biol. Chem. Sci. 4: 1431–1442.

    CAS  Google Scholar 

  71. Yıldırım, Ö. S., Z. Okumuş, M. Kizilkaya, Y. Özdemir, R. Durak, and A. Okur (2007) Comparative quantative analysis of sodium, magnesium, potassium and calcium in healthy cuttlefish backbone and non-pathological human elbow bone. Can. J. Anal. Sci. Spectrosc. 52: 270–275.

    Google Scholar 

  72. Sarin, P., S. J. Lee, Z. D. Apostolov, and W. M. Kriven (2011) Porous biphasic calcium phosphate scaffolds from cuttlefish bone. J. Am. Ceram. Soc. 94: 2362–2370.

    Article  CAS  Google Scholar 

  73. Aksakal, B. and M. Demirel (2015) Synthesis and fabrication of novel cuttlefish (Sepia officinalis) backbone biografts for biomedical applications. Ceram. Int. 41: 4531–4537.

    Article  CAS  Google Scholar 

  74. Shi, P., M. Liu, F. Fan, C. Yu, W. Lu, and M. Du (2018) Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 90: 706–712.

    Article  CAS  PubMed  Google Scholar 

  75. Devitasari, S. P., M. Hudiyati, and D. Anastasia (2019) Effect of hydroxyapatite from waste of tilapia bone (Oreochromis niloticus) on the surface hardness of enamel. J. Phys. Conf. Ser. 1246: 012009.

    Article  CAS  Google Scholar 

  76. Vajrabhaya, L. O., S. Korsuwannawong, and R. Surarit (2017) Cytotoxic and the proliferative effect of cuttlefish bone on MC3T3-E1 osteoblast cell line. Eur. J. Dent. 11: 503–507.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim, B. S., J. S. Kim, H. M. Sung, H. K. You, and J. Lee (2012) Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J. Biomed. Mater. Res. A. 100: 1673–1679.

    Article  PubMed  Google Scholar 

  78. Okumuş, Z. and Ö. S. Yildirim (2005) The cuttlefish backbone: a new bone xenograft material? Turk. J. Vet. Anim. Sci. 29: 1177–1184.

    Google Scholar 

  79. Lee, J. S., S. D. Baek, J. Venkatesan, I. Bhatnagar, H. K. Chang, H. T. Kim, and S. K. Kim (2014) In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int. J. Biol. Macromol. 67: 360–366.

    Article  CAS  PubMed  Google Scholar 

  80. Pallela, R., J. Venkatesan, V. R. Janapala, and S. K. Kim (2012) Biophysicochemical evaluation of chitosan-hydroxyapatitemarine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res. A. 100: 486–495.

    Article  PubMed  Google Scholar 

  81. Huang, Y. C. and H. W. Chu (2013) Using hydroxyapatite from fish scales to prepare chitosan/gelatin/hydroxyapatite membrane: exploring potential for bone tissue engineering. J. Mar. Sci. Technol. 21: 716–722.

    Google Scholar 

  82. Akazawa, T., M. Murata, M. Ito, S. Iida, T. Shigyo, T. Nomura, H. Inano, T. Yamagishi, K. Itabashi, and K. Nakamura (2012) Characterization of bio-absorbable and biomimetic apatite/collagen composite powders derived from fish bone and skin by the dissolution-precipitation method. Key Eng. Mater. 493–494: 114–119.

    Google Scholar 

  83. Song, S. C. S., S. W. Phang, and W. H. Yap (2019) Bioactivity evaluation of bio-hydroxyapatite derived from Spanish mackerel in composite scaffolds for bone tissue engineering. in AIP Conf. Proc. 2137: 020015.

  84. Ng, H. M., S. T. Bee, L. Sin, C. T. Ratnam, and A. R. Rahmat (2018) X-ray diffraction analysis of scomberomorus guttatus-derived hydroxyapatite and montmorillonite on polylactic acid biocomposite. J. Eng. Sci. Technol. 13: 116–132.

    Google Scholar 

  85. Zhu, Q., Z. Ablikim, T. Chen, Q. Cai, J. Xia, D. Jiang, and S. Wang (2017) The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceram. Int. 43: 12213–12220.

    Article  CAS  Google Scholar 

  86. Asadollahzadeh, M., S. M. Rabiee, and H. Salimi-Kenari (2019) In vitro apatite formation of calcium phosphate composite synthesized from fish bone. Int. J. Appl. Ceram. Technol. 16: 1969–1978.

    Article  CAS  Google Scholar 

  87. Venkatesan, J., Z. J. Qian, B. Ryu, N. A. Kumar, and S. K. Kim (2011) Preparation and characterization of carbon nanotubegrafted-chitosan — Natural hydroxyapatite composite for bone tissue engineering. Carbohydr. Polym. 83: 569–577.

    Article  CAS  Google Scholar 

  88. Asadollahzadeh, M., S. Rabiee, and H. Salimi-kenari (2014) Development of biological hydroxyapatite/chitosan composite for bone substitute cement. Proceedings of the 11th International Seminar on Polymer Science and Technology. October 6–9. Tehran, Iran.

  89. Wikanta, T., E. Erizal, and S. Sugiyono (2013) Chitosan composite of crab shell and hydroxyapatite of tuna fish bone as biomaterials for guided tissue regeneration. Squalen BMFPB. 8: 95–104.

    Google Scholar 

  90. Pon-On, W., P. Suntornsaratoon, N. Charoenphandhu, J. Thongbunchoo, N. Krishnamra, and I. M. Tang (2018) Synthesis and investigations of mineral ions-loaded apatite from fish scale and PLA/chitosan composite for bone scaffolds. Mater. Lett. 221: 143–146.

    Article  CAS  Google Scholar 

  91. Xu, G., H. Li, X. Ma, X. Jia, J. Dong, and W. Qian (2009) A cuttlebone-derived matrix substrate for hydrogen peroxide/glucose detection. Biosens. Bioelectron. 25: 362–367.

    Article  CAS  PubMed  Google Scholar 

  92. Hadagalli, K., A. K. Panda, S. Mandal, and B. Basu (2019) Faster biomineralization and tailored mechanical properties of marine-resource-derived hydroxyapatite scaffolds with tunable interconnected porous architecture. ACS Appl. Bio Mater. 2: 2171–2184.

    Article  CAS  Google Scholar 

  93. Venkatesan, J., P. D. Rekha, S. Anil, I. Bhatnagar, P. N. Sudha, C. Dechsakulwatana, S. K. Kim, and M. S. Shim (2018) Hydroxyapatite from cuttlefish bone: Isolation, characterizations, and applications. Biotechnol. Bioprocess Eng. 23: 383–393.

    Article  CAS  Google Scholar 

  94. Kim, B. S., S. S. Yang, and J. Lee (2014) A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 102: 943–951.

    Article  PubMed  Google Scholar 

  95. Kim, B. S., H. J. Kang, and J. Lee (2013) Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J. Biomed. Mater. Res. B Appl. Biomater. 101: 1302–1309.

    Article  PubMed  Google Scholar 

  96. Neto, A. S., A. C. Fonseca, J. C. C. Abrantes, J. F. J. Coelho, and J. M. F. Ferreira (2019) Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings. Mater. Sci. Eng. C Mater. Biol. Appl. 105: 110014.

    Article  CAS  PubMed  Google Scholar 

  97. Rogina, A., M. Antunovic, and D. Milovac (2019) Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers. J. Biomed. Mater. Res. B Appl. Biomater. 107: 197–204.

    Article  CAS  PubMed  Google Scholar 

  98. Siddiqi, S. A., F. Manzoor, A. Jamal, M. Tariq, R. Ahmad, M. Kamran, A. Chaudhry, and I. U. Rehman (2016) Mesenchymal stem cell (MSC) viability on PVA and PCL polymer coated hydroxyapatite scaffolds derived from cuttlefish. RSC Adv. 6: 32897–32904.

    Article  CAS  Google Scholar 

  99. Milovac, D., T. C. Gamboa-Martinez, M. Ivankovic, G. Gallego Ferrer, and H. Ivankovic (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Mater. Sci. Eng. C Mater. Biol. Appl. 42: 264–272.

    Article  CAS  PubMed  Google Scholar 

  100. Abbasian, V., R. Emadi, and M. Kharaziha (2020) Biomimetic nylon 6-baghdadite nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 109: 110549.

    Article  CAS  PubMed  Google Scholar 

  101. Aminatun, A., F. D. E. Handayani, P. Widiyanti, D. Winarni, and S. Siswanto (2019) In vivo approach on femur bone regeneration of white rat (Rattus norvegicus) with the use of hydroxyapatite from cuttlefish bone (Sepia spp.) as bone filler. Vet. World. 12: 809–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ferro, A. C. and M. Guedes (2019) Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors. Mater. Sci. Eng. C Mater Biol Appl. 97: 124–140.

    Article  CAS  PubMed  Google Scholar 

  103. Hartatiek, N. Rohmawati, D. Worowati, Nasikhudin, Yudyanto, R. Kurniawan, J. Utomo, and U. Lestari (2019) The influence of chitosan on crystal size and microstructure of nano-hydroxyapatite from cuttlefish bone-chitosan composites. Mater. Today. Proc. 13: 30–35.

    Article  CAS  Google Scholar 

  104. Neto, A. S., D. Brazete, and J. M. F. Ferreira (2019) Cuttlefish bone-derived biphasic calcium phosphate scaffolds coated with sol-gel derived bioactive glass. Materials (Basel). 12: 2711.

    Article  CAS  PubMed Central  Google Scholar 

  105. Cozza, N., F. Monte, W. Bonani, P. Aswath, A. Motta, and C. Migliaresi (2018) Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass® co-sintered bioceramics. J. Tissue Eng. Regen Med. 12: e1131–e1142.

    Article  CAS  PubMed  Google Scholar 

  106. Kim, J. J., H. J. Kim, and K. S. Lee (2008) Evaluation of biocompatibility of porous hydroxyapatite developed from edible cuttlefish bone. Key Eng. Mater. 361–363: 155–158.

    Google Scholar 

  107. Ressler, A., M. Cvetnic, M. Antunovic, I. Marijanovic, M. Ivankovic, and H. Ivankovic (2020) Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J. Biomed. Mater. Res. B Appl. Biomater. 108: 1697–1709.

    Article  CAS  PubMed  Google Scholar 

  108. Mansouri, K., H. Fattahian, N. Mansouri, P. G. Mostafavi, and A. Kajbafzadeh (2018) The role of cuttlebone and cuttlebone derived hydroxyapatite with platelet rich plasma on tibial bone defect healing in rabbit: An experimental study. Kafkas Univ. Vet. Fak. Derg. 24: 107–115.

    Google Scholar 

  109. Demirel, M. and B. Aksakal (2018) Effect of porosity on the structure, mechanical properties and cell viability of new bioceramics as potential bone graft substitutes. Acta Bioeng. Biomech. 20: 11–22.

    PubMed  Google Scholar 

  110. Kim, B. S., S. S. Yang, J. H. Yoon, and J. Lee (2017) Enhanced bone regeneration by silicon-substituted hydroxyapatite derived from cuttlefish bone. Clin. Oral Implants Res. 28: 49–56.

    Article  PubMed  Google Scholar 

  111. Sukul, M., Y. K. Min, and B. T. Lee (2016) Collagen-hydroxyapatite coated unprocessed cuttlefish bone as a bone substitute. Mater. Lett. 181: 156–160.

    Article  CAS  Google Scholar 

  112. Park, J. Y., K. H. Kyung, S. H. Kim, and S. Shiratori (2014) Fabrication of blood coagulability calcium carbonate composite mimicking cuttlefish bone by layer-by-layer method. Sci. Adv. Mater. 6: 2522–2525.

    Article  CAS  Google Scholar 

  113. Dogan, E. and Z. Okumus (2014) Cuttlebone used as a bone xenograft in bone healing. Vet. Med. 59: 254–260.

    Article  Google Scholar 

  114. Liu, Y., J. Yu, J. Bai, J. Gu, B. Cai, and X. Zhou (2013) Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats. Zhonghua Shao Shang Za Zhi. 29: 548–553.

    CAS  PubMed  Google Scholar 

  115. Vano, M., G. Derchi, A. Barone, and U. Covani (2014) Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: a double-blind randomized controlled trial. Quintessence Int. 45: 703–711.

    PubMed  Google Scholar 

  116. Danelon, M., J. P. Pessan, F. N. Neto, E. R. de Camargo, and A. C. B. Delbem (2015) Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. J. Dent. 43: 806–813.

    Article  CAS  PubMed  Google Scholar 

  117. Gendreau, L., A. P. S. Barlow, and S. C. Mason (2011) Overview of the clinical evidence for the use of NovaMin in providing relief from the pain of dentin hypersensitivity. J. Clin. Dent. 22: 90–95.

    PubMed  Google Scholar 

  118. Browning, W. D., S. D. Cho, and E. J. Deschepper (2012) Effect of a nano-hydroxyapatite paste on bleaching-related tooth sensitivity. J. Esthet. Restor. Dent. 24: 268–276.

    Article  PubMed  Google Scholar 

  119. Zeng, H., D. S. Hwang, J. N. Israelachvili, and J. H. Waite (2010) Strong reversible Fe3+-mediated bridging between dopacontaining protein films in water. Proc Natl Acad Sci USA. 107: 12850–12853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oh, D. X., S. Kim, D. Lee, and D. S. Hwang (2015) Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion. Acta Biomater. 20: 104–112.

    Article  CAS  PubMed  Google Scholar 

  121. Prajatelistia, E., S. W. Ju, N. D. Sanandiya, S. H. Jun, J. S. Ahn, and D. S. Hwang (2016) Tunicate-inspired gallic acid/metal ion complex for instant and efficient treatment of dentin hypersensitivity. Adv. Healthc. Mater. 5: 919–927.

    Article  CAS  PubMed  Google Scholar 

  122. Marcacci, M., E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, R. Quarto, M. Mastrogiacomo, and R. Cancedda (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13: 947–955.

    Article  CAS  PubMed  Google Scholar 

  123. Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Low, D. A. Largaespada, and C. M. Verfaillie (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418: 41–49.

    Article  CAS  PubMed  Google Scholar 

  124. Mankani, M. H., S. A. Kuznetsov, R. M. Wolfe, G. W. Marshall, and P. G. Robey (2006) In vivo bone formation by human bone marrow stromal cells: Reconstruction of the mouse calvarium and mandible. Stem Cells. 24: 2140–2149.

    Article  PubMed  Google Scholar 

  125. Quarto, R., M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344: 385–386.

    Article  CAS  PubMed  Google Scholar 

  126. Michel, J., M. Penna, J. Kochen, and H. Cheung (2015) Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells. Stem Cells Int. 2015: 305217.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukumaran Anil.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, J., Anil, S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. Biotechnol Bioproc E 26, 312–324 (2021). https://doi.org/10.1007/s12257-020-0359-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0359-0

Keywords

Navigation