Skip to main content

Advertisement

Log in

Review of Practices in the Managements of Mineral Wastes: The Case of Waste Rocks and Mine Tailings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mining plays an essential role in resource-rich countries given that it constitutes a source of raw materials and incomes capable of contributing to the economic growth. However, with the intensive mechanisation of mining operations and the modernisation of the ore-processing technologies in view of increasing the productiveness, growing amounts of mineralised rocks are currently excavated from open pit and underground mines. The increase in mining productiveness observed worldwide raises the thorny issue of the mineral wastes’ environmentally friendly management considering their great polluting capacity. Mineral wastes are composed of waste rocks and mine tailings from the flotation beneficiation of ores. The present research reviews over times the worldwide in-force practices in the management of mineral wastes, with particular focus to waste rocks and tailings generated by the flotation beneficiation of ores in view of extracting metals of interest. It discusses environmental issues in relationship with the management of mineral wastes from the DR Congo mining industry, analyses the applicability of both emerging and established techniques to their management, and identifies opportunities for further research with the aim of gaining extended knowledge that can enable considering alternative management solutions. Addressing in deep the relevant issue of mineral waste management, relying on relevant illustrations could help improve practices in the Congolese mining industry as well as gathering data intended for mining operators, researchers and academics interested in mineral waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aldhafeeri, Z. (2018). Reactivity of cemented paste backfill. A thesis submitted in partial fulfilment of the requirements for the Doctorate in Philosophy degree in Environmental Engineering, Department of Civil and Environmental Engineering, Ottawa-Carleton Institute for Environmental Engineering, Faculty of Engineering, University of Ottawa, 201p.

  • Al Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., & Härtel, G. (2010). Nanofiltration of acid mine drainage. Desalination and Water Treatment, 1–14.

  • Almeida, J., Ribeiro, A. B., Santos Silva, A., & Faria, P. (2020). Overview of mining residues incorporation in construction materials and barriers for full-scale application. Journal of Building Engineering, 29, 1–29. https://doi.org/10.1016/j.jobe.2020.101215

    Article  Google Scholar 

  • Andrews, C., Bocoum, B., & Tshimena, D. (2008). Democratic Republic of the Congo, growth with governance in the mining sector, The World Bank Report No. 43402-ZR, May 2008, Oil/Gas, Mining and Chemicals Department, AFCC2, Africa Region, pp. 1–140.

  • Anju, M. (2018). Vertical distribution and potential mobility of heavy metals in new and old tailings of a lead/zinc sulfide mine, Environ. Eng. and Manage Journal 17(7), 1635–1644. http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu.

  • Askaer, L., Schmidt, L., Elberling, B., Asmund, G., & Jónsdóttir, I. S. (2008). Environmental impact on an Arctic soil–plant system resulting from metals released from coal mine waste in Svalbard (78° N). Water Air Soil Pollutants, 195, 99–114.

    Article  CAS  Google Scholar 

  • Aubertin, M., Pabst, T., Bussière, B., James, M., Mbonimpa, M., Benzaazoua, M., & Maqsoud, A. (2015). Revue des meilleures pratiques de restauration des sites d’entreposage de rejets miniers générateurs de DMA, 2015 Symposium on Mines and the Environment, Rouyn-Noranda, pp.1–67.

  • Bar, N., Semi, J., Koek, M., Owusu-Bempah, G., Day, A., Nicoll, S., & Bu, J. (2020). Practical waste rock dump and stockpile management in high rainfall and seismic regions of Papua New Guinea. In PM Dight (ed.) Slope Stability 2020, Safety and risk management, pp. 117–128. Accessible via https://papers.acg.uwa.edu.au/p/2025_02_Semi/. Accessed 10 Apr 2021

  • Barfoud, L., Pabst, T., Zagury, G.J., & Plante, B. (2019). Effect of dissolved oxygen on the oxidation of saturated mine tailings. Geo-Environmental Engineering 2019, Concordia University, Montreal, Canada, May 30–31, 2019.

  • Bascetin, A., Tuylu, S., Adıguzel, D., & Ozdemir, O. (2016). New technologies on mine process tailing disposal. Journal of Geological Resource and Engineering, 2, 63–72. https://doi.org/10.17265/2328-2193/2016.02.002

    Article  Google Scholar 

  • Bashir, R., Ahmad, F., & Beddoe, R. (2020). Effect of climate change on a monolithic desulphurized tailings cover. Water, 12, 2645. https://doi.org/10.3390/w12092645

    Article  CAS  Google Scholar 

  • Benarchid, Y., Taha, Y., Argane, R., Tagnit-Hamou, A., & Benzaazoua, M. (2019). Concrete containing low-sulphide waste rocks asfine and coarse aggregates: Preliminary assessment of materials. Journal of Cleaner Production, 221, 419–429. https://doi.org/10.1016/j.jclepro.2019.02.227.

    Article  CAS  Google Scholar 

  • Benzaazoua, M., Buissière, B. & Lelievre, J. (1998). Flottation non sélective des minéraux sulfurés appliquée dans la gestion environnementale des rejets miniers. The 30th Canadian Mineral Processors Symposium, Ottawa, pp. 682–695.

  • Benzaazoua, M., Bussière, B., Demers, I., Aubertin, M., Fried, E., & Blier, A. (2008). Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Minerals Engineering, 21, 330–340.

    Article  CAS  Google Scholar 

  • Bioteq Environmental Technologies Inc., (2003). Annual report, 355 Burrard Street, Suite 1700, Vancouver, B.C., V6C 2G8, Canada, pp. 1–32. Document accessible sur le site web: www.bioteq.ca. Accessed 07 Apr 2021

  • Bjelkevik, A., (2005). Water cover closure design for tailings dams: state of the art report, Luleå University of Technology Department of Civil and Environmental Engineering Division of Geotechnology, 82p.

  • Borra, C. R., Blanpain, B., Pontikes, Y., Binnemans, K., & Van Gerven, T. (2016). Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review. Journal of Sustainable Metallurgy, 2, 365–386. https://doi.org/10.1007/s40831-016-0068-2

    Article  Google Scholar 

  • Brantes, A.R. & Olivares, G. (2008). Best practices and efficient use of water in the mining industry, under the directorate of Zúñiga, A. I., The Chilean Copper Commission (COCHILCO), A Quebecor World printing, pp. 11–18.

  • Bruce, I.G., Logue, C. & Wilchek, L-A. (1997). Trends in tailing dam safety. Bruce Geotechnical Consultants Inc., pp. 1–22.

  • Bussière, B., Nicholson, R. V., Aubertin, M., & Benzaazoua, M. (1997). Evaluation of the effectiveness of covers built with desulfurized tailings for preventing acid mine drainage. 50th Canadian Geotechnical Conference. Ottawa, 1, 17–25.

    Google Scholar 

  • Caldwell, J.A. & Robertson, A. (1986). Geotechnical stability considerations in the design and reclamation of tailings impoundment. Presented at Symposium: “Geotechnical Stability in Surface Mining, Calgary, Alberta”, November 1986. Accessible via: https://rgc.ca/files/publications/caldwell1986eremedialactivitiesaridareas.pdf. Accessed 26 Apr 2021

  • Cánovas, C. R., De La Aleja, C. G., Macías, F., Pérez-López, R., Basallote, M. D., Olías, M., & Nieto, J. M. (2019). Mineral reactivity in sulphide mine wastes: Influence of mineralogy and grain size on metal release. European Journal of Mineralogy, 31(2), 263–273.

    Article  Google Scholar 

  • Carneiro, A., & Fourie, A.B. (2018). A conceptual cost comparison of alternative tailings disposal strategies in Western Australia. In Jewell, R.J., & Fourie, A.B. (eds); Paste 2018, Perth, Australia, pp. 439–454. https://doi.org/10.36487/ACG_rep/1805_36_Carneiro.

  • Cervantes-Guerra, Y. M., Pierra-Conde, A., Mai, J., Jürgen-Gursky, H., Van-Caneghem, J., & Vandecasteele, C. (2019). The deep-sea tailings placement (DSTP) as alternative for the residuals management in the mining industry. Minería y Geología, 35(1), 31–48.

    Google Scholar 

  • Chadwick, J., & Cattaneo, B. (2005). Tails of the DRC. International Mining, Vol. 1, N° 3, Friary Press, Dorset, UK, pp.23–27.

  • Chadwik, J. (2008). “CAMEC – the cobalt champion”. International Mining, July 2008, pp. 8–16.

  • Chan, B. K. C., Bouzalakos, S., & Dudeney, A. W. L. (2008). Integrated waste and water management in mining and metallurgical industries. Transactions of Nonferrous Metals Society of China, 18(6), 1497–1505.

    Article  CAS  Google Scholar 

  • Charbonnier, P. (2001). Management of mining, quarrying and ore-processing waste in the European Union. Study made for DG Environment, European Commission, BRGM/RP-50319-FR, pp. 1–75.

  • Cheng, T. C., Kassimi, F., & Zinck, J. M. (2016). A holistic approach of green mining innovation in tailings reprocessing and repurposing. Proceedings Tailings and Mine Waste 2016, 2–5 October 2016, Keystone, Colorado, USA, pp. 49-56.

  • Clark, D. W., Newell, A. J. H., Chilman, G. F., & Capps, P. G. (2000). Improving flotation recovery of copper sulphides by nitrogen gas and sulphidisation conditioning. Minerals Engineering, 13(12), 1197–1206.

    Article  CAS  Google Scholar 

  • Countois, Y., Maurice, R., Arpin, M., & Demers, B. (2003). Étude sur la restauration des mines de cuivre et de cobalt en République Démocratique du Congo. Rapport d’étude initiale N M-6708 (603082) des recherches en République Démocratique du Congo et rédigé par SNC-Lavalin International, Division Environnement, Montréal (Canada), 213p. Accessible via http://congomines.org/system/attachments/assets/000/001/772/original/RDC__Etude_sur_la_restauration_des_mines_du_Cuivre_et_du_Cobalt.pdf?1582110550. Accessed 28 Mar 2021

  • Craw, D., Kerr, G., Malloch, K., & McLachlan, C., (2017). Storage of arsenic-rich gold mine tailings as future resources. In Wolkersdorfer, C., Sartz, L., Sillanpää, M., & Häkkinen, A. (Eds): Mine water and circular economy, IMWA 2017, Lappeenranta, Finland, pp. 350–357.

  • Demi, G., (2003). Waste assessment of copper mines and plants in Albania and their impact in surrounding areas.

  • Department of Industry, Tourism and Resources (2007). Tailings management. Leading practice - Sustainable development program for the mining industry, Australian Government, pp. 1

  • Digby Wells & Associates (2008). Kalukundi copper-cobalt project environmental and social impact assessment. Report on the tailings storage facility and the waste rock dumps (Rev 1) prepared for Envirolution Consulting (PTY) Ltd, pp. 1–32.

  • Dimitrios, P. & Giannopoulou, I. (2007). Integrated treatment of copper industry wastes towards prevention of water resources contamination in Western Balkans, Proceedings of EMC, pp. 1–10.

  • Dino, G. A., Cavallo, A., Rossetti, P., Garamvölgyi, E., Sándor, R., & Coulon, F. (2020). Towards sustainable mining: Exploiting raw materials from extractive waste facilities. Sustainability, 12, 2383. https://doi.org/10.3390/su12062383

    Article  CAS  Google Scholar 

  • Elmayel, I., Esbrı´, J.M., Garcıa-Ordiales, E., Elouaer, Z., Garcia-Noguero, E. M., Bouzid, J., Antonio Campos, J. A. & Higueras, P. L. (2020). Biogeochemical assessment of the impact of Zn mining activity in thearea of the Jebal Trozza mine, Central Tunisia. Environmental Geochemistry andHealth 42, 3529–3542. https://doi.org/10.1007/s10653-020-00595-2.

  • EPA (1994). Design and evaluation of tailings dams. A technical report (EPA 530-R-94-038/ NTIS PB94-2018) prepared by the U.S. Environmental Protection Agency, The Office of Solid Waste - Special Waste Branch 401 M Street, SW, Washington, DC 20460, pp. 1-56.

  • Eurasian Resources Group (2019). Building a sustainable business, the Sustainable Development Report 2019, 105p. Accessible via  https://www.erg.kz/files/ERG%20SR%202019%20WEB%20(3).pdf/. Accessed 4 Apr 2021

  • European Commission (2009). Management of tailings and waste rock from mining activities: best available techniques reference document. Ministry of Ecology, Energy, Sustainable Development and the Sea, French Republic, 202p. Accessible via http://www7.nau.edu/itep/main/hazsubmap/docs/CoalMining/ManagementOfTailingsAndWasteRockInMiningActvities.pdf. Accessed 28 Apr 2021

  • Fan, L., Zhou, X., Luo, H., Deng, J., Dai, L., Ju, Z., Zhu, Z., Zou, L., Ji, L., Li, B., & Cheng, L. (2016). Release of heavy metals from the pyrite tailings of Huangjiagou pyrite mine: Batch experiments. Sustainability, 8(1), 96.

    Article  Google Scholar 

  • Fonseca do Carmo, F., Ychino Kamino, L. H., Tobias Junior, R., Christina de Campo, I., Fonseca do Carmo, F., Silvino, G., Da Silva Xavier de Castro, K. J., Leite Mauro, M., Alonso Rodrigues, N., De Souza Miranda, M. P., & Ferreira Pinto, C.E. (2017). Fundão tailings dam failures: the environmental tragedy of the largest technological disaster of Brazilian mining in the global context. Perspectives in Ecology and Conservation 15, 145-151.

    Article  Google Scholar 

  • Franks, D. M., Boger, D. V., Côte, C. M., & Mulligan, D. R. (2011). Sustainable development principles for the disposal of mining and mineral processing wastes. Resources Policy, 2011(36), 114–122.

    Article  Google Scholar 

  • Fraser, W. W., & Robertson, J. D. (1994). Subaqueous disposal of reactive mine waste: an overview and update of case studies - MEND/Canada, International Land Reclamation and Mine Drainage Conference and 3rd International Conference on the Abatement of Acidic Drainage, Pittsburgh, vol. 1, pp. 250–259.

  • Garbarino, E., Orveillon, G., & Saveyn, H. G. M. (2020). Management of waste from extractive industries: The new European reference document on the best available techniques. Resources Policy, 69, 101782. https://doi.org/10.1016/j.resourpol.2020.101782

    Article  Google Scholar 

  • Ghose, M. K., & Sen, P. K. (1999). Recovery of usable ore fines from iron ore tailings and their environmental management – a case study. Land Contamination & Reclamation, 7(2), 143–149.

    Google Scholar 

  • Githiria, J. M., & Onifade, M. (2020). The impact of mining on sustainable practices and the traditional culture of developing countries. Journal of Environmental Studies and Sciences. https://doi.org/10.1007/s13412-020-00613-w

    Article  Google Scholar 

  • Golder Associates Africa Pty Ltd (2017). Kamoa Copper Project Environmental Impact Study Update PE n˚12873, 13025 & 13026. Report Number: 1653699–314788–3. Submitted to DPEM Kamoa Copper SA, 392p. Accessible via https://www.ivanhoemines.com/site/assets/files/4150/2017_06_kamoa_eis_update.pdf. Accessed 28 Apr 2021

  • Hancock, G. R., Martín Duque, J. F., & Willgoose, G. R. (2020). Mining rehabilitation – using geomorphology to engineer ecologically sustainable landscapes for highly disturbed lands. Ecological Engineering, 155, 105836. https://doi.org/10.1016/j.ecoleng.2020.105836

    Article  Google Scholar 

  • Hein, B. (2005). Water and waste water situation in Germany. Division of Environmental Statistics, Federal Statistical Office of Germany, pp.1–17.

  • Hendry, J.W., Evans, L. & Wiatzka, G. (2005). Technical report on the Ok Tedi Mining Limited Mt. Fubilan copper-gold mine mineral resource and mineral reserve estimates, Papua New Guinea, NI 43–101 report preared by Roscoe Postle Associates Inc. (RPA) for INMET MINING Corporation, pp. 1–11, 20–26.

  • ICME & UNEP (1998). Case studies on tailings management, a series of publications providing information on environmental and health matters relating to the metals mining and producing industry, Ottawa, pp. 1–58.

  • International Council on Mining & Metals (ICMM) (2021). Conformance protocols: global industry standard for tailings management, a publication developed by Environmental Resources Management (ERM) in partnership with Klohn Crippen Berger Ltd (KCB), United Kingdom, 108p.

  • Jabin-Bevans, S., Lotriet, M.P., Heili, C., Meintjes, A., & Naismith, A. (2014). Amended Technical Report for Kamoto Copper Company Kolwezi, Katanga Province, Democratic Republic of the Congo. Prepared for Katanga Mining Limited and compiled by McIntosh RSV LLC, 204p. Accessible via  http://files.investis.com/kat/operations/reportsoperational/kcc_techreport_06_06_23.pdf. Accessed 18 Apr 2021

  • Johansson J. & Ljungberg J. (2009). Qualitative hydrogeochemical evaluation of the mine water in the Laisvall mine. Accessible via: http://www.boliden.se/www/bolidenSE.nsf/(LookupWebAttachment)/Library%20Lectures/$file/Qualitative_Laisvall.pdf. Accessed 15 Apr 2021

  • Jordanov, S.H., Maletic, M., Dimitrov, A., Slavkov, D., Paunovic, P. (2007). Waste waters from copper ores mining/flotation in ‘Bucbim’ mine: (characterization and remediation). Desalination, 213, 65–71. http://hdl.handle.net/20.500.12188/445.

  • Journal Officiel de la RDC (2003). Décret N° 038/2003 du 26 Mars 2003 portant Règlement Minier, Présidence de la République, Kinshasa, pp. 1–179. Accessible via: www.leganet.cd › D.038.2003.26.03.2003.htm. Accessed 22 Apr 2021

  • Kalenga, N. M., Frenay, J., Mukendi, K., DeDonato, P., Kaniki, T. A., (2006). Inventory of sites of production, storage anddisposal of mineral wastes in Katanga and assessment of environmental impacts, areport of a scientific cooperation project 2005. N°6312PS508 achieved by theUniversity of Lubumbashi (UNILU), the University of Liege (ULg) and theNational Polytechnic Institute of Lorraine (INPL) funded by the France speakingcountries Academic Agency (FAA); p. 216.

  • Karlsson, T., Kauppila, P. M., & Lehtonen, M. (2018). Prediction of the long-term behaviour of extractive wastes based on environmental characterisation: correspondence of laboratory prediction tests with field data, pp. 11–26. In Kauppila, P.M., & Tarvainen, T. (eds) 2018. Improving the environmental properties, utilisation potential and long-term prediction of mining wastes. Geological Survey of Finland, Bulletin 408, 108 p.

  • Kate, A. (2009). Mining matters: unacceptable metal mining in developing countries and the responsibilities of companies in the Netherlands, Friends of the Earth Netherlands (Milieu defensie). A document produced with the financial assistance of the European Union, pp. 24–26.

  • Kitobo, S. W. (2009). Dépollution et valorisation des rejets miniers sulfurés du Katanga, Cas des tailings de l’Ancien Concentrateur de Kipushi, Thèse de doctorat en Sciences de l’Ingénieur, Facultés des Sciences Appliquées, Université de Liège, pp.1–3, 38–218.

  • Kitobo, S. W. (2016). Acid mine drainage in the mining sector and environmental protection measures. Seminar on the mining environment for companies operated in Haut Katanga and Lualaba regions, 01–03 September 2016, City of Lubumbashi, Haut-Katanga region, DR Congo, 36p.

  • Klohn Crippen Berger Ltd (KCB) (2017). Study of tailings management technologies, Report 2.50.1, a work done on behalf of the Mine Environment Neutral Drainage (MEND) project and sponsored by the Mining Association of Canada (MAC) and MEND, 57p.

  • Koomson, B., Asiam, E. K., Skinner, W., & Addai-Mensah, J. (2017). Understanding the mechanism of arsenic mobilisation and behaviour in tailings dams. Ghana Mining Journal, 17(1), 85–89.

    Article  Google Scholar 

  • Koski, R. A. (2012). Metal dispersion resulting from mining activities in coastal environments: A pathways approach. Oceanography, 25(2), 170–183.

    Article  Google Scholar 

  • Kudakwashe, L. S. (2019). Re-purposing of mine waste: an alternative management approach to gold tailings in South Africa. A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Philosophy specialising in Sustainable Mineral Resource Development, Minerals to Metals Initiative, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, 99p.

  • Kudełko, J. (2018). Effectiveness of mineral waste management. International Journal of Mining, Reclamation and Environment, 32(6), 440–448. https://doi.org/10.1080/17480930.2018.1438036

    Article  CAS  Google Scholar 

  • Kugiel, M., & Piekło, R. (2012). Directions in the management of mining wastes at HALDEX S. A. Gór, Geol, 7, 133–145.

    Google Scholar 

  • Kwong, Y. T. J., Apte, S. C., Asmund, G., Haywood, M. D. E., & Morello, E. B. (2019). Comparison of environmental impacts of deep-sea tailings placement versus on-land disposal. Water, Air and Soil Pollution, 230(287), 1–10. https://doi.org/10.1007/s11270-019-4336-1

    Article  CAS  Google Scholar 

  • Lloyd, B., Daniel, C., & Kuyek, J. (2008). The boreal below: mining issues and activities in Canada’s boreal forest. A revised and updated version of the report prepared by Northwatch and Mining Watch Canada, pp. 1–201. Accessible via : https://miningwatch.ca/sites/default/files/Boreal_Below_2008_web.pdf. Accessed 22 Apr 2021

  • Lu, J., Yuan, F., Barabadi, A., Garmabaki, A.H.S & Zhang, F. (2016). The possibilities and challenges of using industrial rest products on mine waste management in the Arctic. In: Proceedings of the 8th International Conference on Waste Management and the Environment (WM 2016), pp. 161–171, WIT Transactions on Ecology and The Environment 202, accessible via doi:https://doi.org/10.2495/WM160151.

  • Lutandula, M. S. & Banza, M., (2013). Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. Journal of Environmental Chemical Engineering 1/4(4), 1085–1090. https://doi.org/10.1016/j.jece.2013.08.025.

  • Ma, W., Schott, D., & Lodewijks, G. (2017). A new procedure for deep sea mining tailings disposal. Minerals, 7(47), 1–14. https://doi.org/10.3390/min7040047

    Article  CAS  Google Scholar 

  • Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I. A., & Turner, J. N. A. (2006). Geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79, 423–447.

    Article  Google Scholar 

  • Malkin, V. P., & Kuzin, V. I. (2001). Purification of industrial waste waters using reagents. Chemical and Petroleum Engineering, 37(5), 338–343. https://doi.org/10.1023/A:1017982128630

    Article  CAS  Google Scholar 

  • Manyuchi, M. M., Mbohwa, C., & Muzenda, E. (2019). Mining waste management for sustainable mining practices. Proceedings of the International Conference on Industrial Engineering and Operations Management Bangkok, Thailand, March 5–7, 2019, pp. 137–142.

  • Martin, T. E., Davies, M. P., Rice, S., Higgs, T. & Lighthall, P. C. (2002). Stewardship of tailings facilities. Mining, Minerals and Sustainable Development (MMSD) N°20. A project of the International Institute for Environment and Development (IIED) achieved under the support of the World Business Council for Sustainable Development, Canada, pp. 1–41.

  • Martinez, J. C. D. (2019). Reutilization, recycling and reprocessing of mine tailings, considering economic, technical, environmental and social features, a review. Master's thesis, Chair of Mining Engineering and Mineral Economics Department Mineral Resources Engineering Montan Universität Leoben, 106p.

  • Matsumoto, S., Shimada, H., & Sasaoka, T. (2016). Key factors of acid mine drainage AMD in the history of the contribution of mining industry to the prosperity of the United States and South Africa: a review. Scientific Research Publishing, pp. 445–460.

  • McMahon, D. A. (1965). Copper, A material survey. Bureau of Mines Information Circular 8225, United States Department of the Interior, Washington, pp. 1–110.

  • Mehta, N., Dino, G. A., Passarella, I., Ajmone-Marsan, F., Rossetti, P., & De Luca, D. A. (2020). Assessment of the possible reuse of extractive waste coming from abandoned mine sites: Case study in Gorno. Italy. Sustainability, 12(6), 2471. https://doi.org/10.3390/su12062471

    Article  CAS  Google Scholar 

  • Mining Journal Research Services (1996). Environmental and safety incidents concerning tailings dams at mines. Results of a survey for the years 1980–1996, a report prepared for the United Nations Environmental Programme (UNEP), Industry and Environment, Paris, 129p.

  • Missouri Department of Natural Resources (2002). Preventing pollution in wastewater systems. Environmental Assistance Office, Jefferson City, pp.1–38.

  • Mudd, G. M. (2009). Historical trends in base metal mining: backcasting to understand the sustainability of mining. Proceedings of the 48th Annual Conference of Metallurgists, Canadian Metallurgical Society, Sudbury, Ontario, Canada, August 2009, pp. 1–10.

  • Mulligan, C. N., & Gibbs, B. F. (2003). Innovative biological treatment processes for wastewater in Canada. Water Quality Research Journal of Canada, 38(2), 243–265. https://doi.org/10.2166/wqrj.2003.018

    Article  CAS  Google Scholar 

  • Musody, M., Katanga, J., & Ilunga, K. (2007). Industrie minière et pollution des sols agricoles, Cas de la vallée Kafubu, Table ronde organisée à Lubumbashi le 10 février 2007 sur l’impact de l’exploitation minière sur l’environnement du Katanga, PREMI-Congo, Point focal du Katanga, Lubumbashi, pp. 10–17. Accessible via : https://pdfslide.net/documents/table-ronde-du-10-fevrier2007-impact-mines-sur-env-katpdf.html. Accessed 26 Mar 2021

  • Nakhaei, F., & Irannajad, M. (2017). Sulphur removal of iron ore tailings by flotation. Journal of Dispersion Science and Technology, 38(12), 1755–1763. https://doi.org/10.1080/01932691.2017.1281142

    Article  CAS  Google Scholar 

  • NESMI, (2005). Mining industry research handbook. Results of the work of the European Thematic Network NESMI (Network on European Sustainable Minerals Industries). Funded by the European Commission under the 5th Framework Programme for Research and Technical development in the Thematic Programme GROWTH (Competitive and sustainable growth), p. 25.

  • Ng’andu, D. (2001). The effect of undergroundmine water on performance of the Mufulira flotation process. Journal of Southern African Institute of Mining and Metallurgy, 101, 367–380.

    Google Scholar 

  • Nguyen, Q., Kitchener, R. & Bradshaw, C. (2019). Investigation, monitoring and management of downstream groundwater in the tailings storage facilities of Nui Phao Mine, Vietnam. Waste Management and the Environment IX, pp. 35–45, WIT Transactions on Ecology and the Environment, Vol 231, doi:https://doi.org/10.2495/WM180041.

  • Nordbrand, S., & Bolme, P. (2007). Powering the mobile world: cobalt production for batteries in the DR Congo and Zambia. A report published in November, 2007 by SwedWatch as part of the “makeITfair campaign”: a European wide project on consumer electronics with the financial assistance of European Union, pp. 1–79.

  • Oelofse, S. (2008). Mine water pollution - acid mine decant, effluent and treatment: a consideration of key emerging issues that may impact the state of the environment. Emerging Issues Paper: Mine Water Pollution 2008. A document prepared for The South African Department of Environmental Affairs and Tourism (DEAT), pp. 1–11.

  • Omari, L. (2016). Management and treatment of waste water in mining companies and other industries. Seminar on the mining environment for companies operated in Haut Katanga and Lualaba regions, 01–03 September 2016, City of Lubumbashi, Haut-Katanga region, DR Congo, 28p.

  • Othlander, B., Chatwin, T., & Alakangas, L. (2012). Management of sulfide-bearing waste, a challenge for the mining industry. Minerals, 2(1), 1–10. https://doi.org/10.3390/min2010001

    Article  Google Scholar 

  • Panagos, P., Van Liedekerke, M., Yigini, Y., & Montanarella, L. (2013). Contaminated sites in Europe: review of the current situation based on data collected through a European network. Journal of Environmental and Public Health, vol. 2013, Article ID 158764, 11 pages, 2013. https://doi.org/10.1155/2013/158764

  • Panchal, S., Deb, D., & Sreenivas, T. (2018). Mill tailings-based composites as paste backfill in mines of U-bearing dolomitic limestone ores. Journal of Rock Mechanics and Geotechnical Engineering, 10, 310–322.

    Article  Google Scholar 

  • Papoulias, F. (2007). EU rules for safe management of mining waste: The new directive and related initiatives. UNECE Workshop on the Safety of Tailings Dams, Yerevan, Armenia, 12–13(11/2007), 1–26.

    Google Scholar 

  • Poling, G., Ellis, D., Murray, J., Parson, T., & Pelletier, C. (2002). Underwater tailing placement at Island Copper Mine – a success story (p. 250). Society for Mining.

    Google Scholar 

  • Pöyry Consulting Co. Ltd. (2009). Market study on the business opportunities in municipal and industrial wastewater/ effluent treatment in China. General Report. December 18, 2009, Beijing, pp.1–87.

  • Rao, S. R., & Finch, J. A. (1989). Review of water re-use in flotation. Journal of Mineral Engineering, 2, 65–85.

    Article  CAS  Google Scholar 

  • Real, F., & Franco, A. (1990). Tailings disposal at Neves-Corvo Mine, Portugal. International Journal of Mine. Water, 9(1–4), 209–221.

    Google Scholar 

  • Remešicová, E., Andráš, P., & Kučerová, R. (2018). Environmental characteristics of the mining area affected by sulphide minerals and acidification (Banská Štiavnica, Slovakia). Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 103–122. https://doi.org/10.24917/25438832.3.8

    Article  Google Scholar 

  • Robinson, B., Bus, A., Diebels, B., Froehlich, E., & Grayson, R. (2004). Tailings disposal options for the Kensington Mine at Berners Bay near Juneau (Alaska). Alaska Tsunami papers, The team Midas, Juneau-Douglas High School, p.1–15, Accessible via le lien internet: http://seagrant.uaf.edu/nosb/papers/2004/midas-tailings.html. Accessed 15 Mar 2021

  • Rousseau, M., & Pabst, T. (2020). Blast damaged zone influence on water and solute exchange between backfilled open-pit and the environment. Geo Virtual, Resilience and Innovation, 14–16 September 2020

  • Rubinos, D., Jerez, Ó., Forghani, G., Edraki, M., & Kelm, U. (2019). Partitioning of potentially toxic elements and environmental risk assessment in copper tailings from Chile. The 6th International Congress on Environment and Social Responsibility in Mining. Sustainable Mining, 2019, 1–8.

    Google Scholar 

  • Safe Drinking Water Foundation (2008). Mining and water pollution. Accessible via: www.safewater.org, pp. 1–6. Accessed 23 Apr 2021

  • Schaanning, M. T., Trannum, H. C., Øxnevad, S., & Ndungu, K. (2019). Benthic community status and mobilization of Ni, Cu and Co at abandoned sea deposits for mine tailings in SW Norway. Marine Pollution Bulletin, 141, 318–331.

    Article  CAS  Google Scholar 

  • Schoenberger, E. (2016). Environmentally sustainable mining: The case of tailings storage facilities. International Journal of Resources Policy, 49, 119–128.

    Article  Google Scholar 

  • Shavina, E., & Prokofev, V. (2020). Implementation of environmental principles of sustainable development in the mining region. Vth International Innovative Mining Symposium, E3S Web of Conferences 174, 02014, pp.1–6. https://doi.org/10.1051/e3sconf/202017402014.

  • Shengo, L. M. (2013). Etude du recyclage de l’eau résiduaire dans la flottation des minerais oxydés dugisement de Luiswishi (PhD Thesis) Engineering Sciences. Universityof Liege.

  • Shengo, L. M. (2021a). Potentially exploitable reprocessing routes for recovering copper and cobalt retained in flotation tailings. Journal of Sustainable Metallurgy, 7(1), 60–77. https://doi.org/10.1007/s40831-020-00325-z

    Article  Google Scholar 

  • Shengo, L., & Mansoj, M. (2008). The pollution of the surface waters and its impact on the quality of the vegetables cultivated and consumed in the city of Lubumbashi. Journal of Environmental Health Australia, 8(2), 58–66.

    Google Scholar 

  • Shengo, L., Mashala, T., Kalenga, M., & Chanka, L. (2007). Etude de la pollution des écosystèmes aquatiques à Lubumbashi « Cas de la rivière Lubumbashi », Annales du CUKAM/Ext. Unilu, Vol. 5, N°1/juillet 2007, pp. 76–81.

  • Shengo, L., Tshabu, M., & Ilunga, N. (2008). Survey of metal contaminants in the effluent generated by three factories in Lubumbashi, Democratic Republic of the Congo. Journal of Environmental Health Australia, 8(3), 40–45.

    Google Scholar 

  • Shengo, L. M., & Kime, M-B. (2021). Roadmap for increasing the Congolese mining industry involvement in the local community development. Community Development Journal, bsab004, https://doi.org/10.1093/cdj/bsab004.

  • Shengo, L. M. (2008). Management of tailings from ores flotation at the new concentrator in Kipushi (p. 108). Department of Chemistry, Faculty of Science, University of Lubumbashi.

    Google Scholar 

  • Shengo, L. M. (2016). Report of the fact-finding mission carried out from 16 to 17 September 2016 to KAI PENG mining at Likasi at the request of the Provincial Ministry of Mines, Land Affairs, Environment and Sustainable Development, Haut-Katanga region, DR Congo, 14p.

  • Shengo, L. M. (2021b). Biological treatment of clarified wastewater from the flotation of copper–cobalt ores. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03261-x

    Article  Google Scholar 

  • Shengo, M. L. & Kashala, N. G., (2013). Zinc oxide production through reprocessing of the electric arc furnace flue dusts. Journalof Environmental Chemical Engineering, 1(3), 600–603. https://doi.org/10.1016/j.jece.2013.06.027.

  • Shengo, L. M., & Mutiti, W. N. C. (2016). Bio-treatment and water reuse as feasible treatment approaches for improving wastewater management during flotation of copper ores. International journal ofEnvironmental Science and Technology, 13(10), 1–16. https://doi.org/10.1007/s13762-016-1073-5.

    Article  CAS  Google Scholar 

  • Shengo, L. M., Kitungwa, K. B., Mutiti, C. W. N., & Mulumba, M. J. L. (2017). Recovery of copper metal through reprocessing of residues from a hydrometallurgical plant. Asian Journal of Engineering and Technology, 5(1), 1–10.

    Google Scholar 

  • Sheoran, A. (2017). Use of base metal tailings from mining industry in concrete: a review. International Journal of Research in Engineering and Applied Science 7 (6), 1–9. Accessible via http://euroasiapub.org/journals.php.

  • Sibanda, L. K. (2019). Re-purposing of mine waste: an alternative management approach to gold tailings in South Africa. A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Philosophy specialising in Sustainable Mineral Resource Development, Minerals to Metals Initiative, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, 99p.

  • Sol, V. M., Peters, S. W. M. & Aiking, H. (1999). Toxic waste storage sites in EU countries. A preliminary risk inventory, A IVM Report N° R-99/04 commissioned by the WWF European Freshwater Programme, The Institute for Environmental Studies, Vrije Universiteit, The Netherlands, pp. 1–68.

  • State of Alaska & US EPA (2008). Mining information session. Alaska Forum on the Environment held on February 12, 2008, Anchorage and Alaska, pp. 1–50.

  • Stojanovic, L., Figun, L., & Trivan, J. (2020). Risk management on Medjedja Dam on tailing storage facility, Omarska Mine Prijedor. Archives for Technical Sciences, 22(1), 11–20.

    Google Scholar 

  • Stoltz, E. (2004). Phytostabilisation - use of wetland plants to treat mine tailings. Doctoral thesis, Department of Botany, Stockholm University, pp.1–45.

  • Stoops, R. F. & Redeker, I. H. (1970). North Carolina feldspar tailings utilization. Proceedings of the Second Mineral Waste Utilization Symposium held in Chicago, Illinois on March 18–14, 1970, pp. 177–180.

  • Sumi, L. & Thomsen, S. (2001). Mining in remote areas: issues and impacts. Produced for Mining Watch Canada/Mines Alert by the Environmental Mining Council of British Columbia. Printed by union labour at Fleming Printing, Victoria, BC, pp. 1–33.

  • Taskinen, A., Kauppila, P. M., Tornivaara, A., Heino, N., Kurhila, M., Tiljander, M., & Korhonen, T. (2018). Improving the environmental properties of arsenic and sulphide rich Kopsa Au–Cu ore tailings through optimised mineral processing. Geological Survey of Finland, Bulletin, 408, 59–82.

    Google Scholar 

  • The Mining Association of Canada (MAC) (1998). A guide to the management of tailings facilities, an extension of MAC’s Environmental Policy and Environmental Management Framework specifically applied to tailings management, pp.1–1 – 12.3.

  • Tsukerman, V. A., & Ivanov, S. V. (2020). Management of the industrial waste when exploiting mineral resources of the Arctic. International science and technology conference "EarthScience”, IOP Publishing Conf. Series: Earth and Environmental Science 459, 1–5. doi:https://doi.org/10.1088/1755-1315/459/4/042066.

  • UNEP (2000). Mining and sustainable development II: challenges and perspectives. Industry and Environment, Vol. 23, Special issue, pp. 1–94.

  • United Nations Economic Commission for Europe (ECE). (2014). Safety guidelines and good practices for tailings management facilities (p. 34p). Printed at United Nations.

    Google Scholar 

  • United Nations Environmental Programme (UNEP) and International Commission on Large Dams (ICOLD) (2001). Tailings dams: risk of dangerous occurrences: lessons learnt from practical experiences. Bulletin (International Commission on Large Dams); 121, Paris, 144p.

  • US Committee of Large Dams (USCOLD) (1994). Tailings dams incidents, Denver Colorado, ISBN 1–884575–03-X, 84p.

  • Van der Schyff, W. (2011). An Independent Technical Report (NI 43–101) on the Material Assets of Katanga Mining Limited, Katanga Province, Democratic Republic of Congo. Prepared by Golder Associates, 154p. Accessible via http://files.investis.com/katanga/technicalreport-2011/katanga-mining-limited-technical-report2.pdf. Accessed 27 Apr 2021

  • Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118.

    Article  CAS  Google Scholar 

  • Vande Weghe,J. P., Franssen, J., Kalambay, G., Kramkimel, J. D., & Musibono, D., (2005). Profil Environnemental (PEP) de la République Démocratique du Congo, Rapport Provisoire, European Union Rural & Agriculture Temporary Association (EURATA), Contrat N° 2005/105393 - Version 1, Contrat-cadre AMS/451 – Lot 1, République Démocratique du Congo, pp. 42, 52, 64–65, 151–153.

  • Verlinden, P., & Cuypers, L. (1956). Union Minière du Haut Katanga 1906–1956, Cinquantième Anniversaire de sa création, VROMAT’S S.A., Etablissements Généraux d’Imprimerie, A.S.A.R. et Aug. MEERSMANS, Bruxelles, 1–276.

  • Vick, S. G. (1999). Tailings dam safety – implications for the dam safety community. Proceedings “Canadian Dam Safety Association’s 2nd Annual Conference”, Sudbury, Canada. October 1999, pp.1–12.

  • Villachica León, C. (2001). Total flotation and backfill. Acta Montanistica Slovaca Ročník, 6(1), 73–84.

    Google Scholar 

  • Warhurst, A., & Noronha, L. (2000). Environmental policy in mining: Corporate strategy and planning for closure (pp. 118–139). Lewis Publishers.

    Google Scholar 

  • Wiertz, J. V., & Marinkovic, F. A. (2005). Dissolved pollutant transport in tailings ponds. Environmental Geology, 47, 237–240.

    Article  CAS  Google Scholar 

  • Woodrow, T. W. (2001). Practical solutions for optimizing steel mill wastewater treatment plants. AISE Steel Technology, pp.46–48.

  • Wu, A. X., Jiang, G. Z, Wang, Y., Wang, Y. M., Wang, H. J., & Li, C. (2018). Compressive strength behaviour of sulphur tailings paste backfill: effects of binders and additives. Paste 2018, Perth, Australia, pp; 507–514. doi:https://doi.org/10.36487/ACG_rep/1805_44_Wang_Wu.

  • Yilmaz, E., Belem, T., & Benzaazoua, M. (2012). One-dimensional consolidation parameters of cemented paste backfills. Gospodarka Surowcami Mineralnymi, 28(4), 29–45.

    CAS  Google Scholar 

  • Yilmaz, E., & Yilmaz, E. (2018). Sustainability and tailings management in the mining industry: Paste technology. Mugla Journal of Science and Technology, 4(1), 16–26. https://doi.org/10.22531/muglajsci.383095

    Article  Google Scholar 

  • Yilmaz, E., Belem, T., Benzaazoua, M., & Bussière, B. (2010). Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill. ASTM Geotechnical Testing Journal, 33, 1–12.

    Google Scholar 

  • Yilmaz, E., Benzaazoua, M., Bussière, B., & Pouliot, S. (2014). Influence of disposal configurations on hydrogeological behaviour of surface paste disposal: A field experimental study. International Journal of Minerals Engineering, 131, 12–25.

    CAS  Google Scholar 

  • Yilmaz, E., Kesimal, A., & Erçikdi, B. (2004). Evaluation of acid producing sulphidic mine tailings as a paste backfill. Instanbul Üniv.Müh. Fak.Yerbilimberi Dergisi, C. 17, S. 1, pp. 11–19.

  • Yin, S., Shao, Y., Wu, A., Rao, Y., & Chen, X. (2017). Deformation behaviors of cemented backfill using sulphide-content tailings. Paste 2017, Beijing, China, pp. 315–327. doi:https://doi.org/10.36487/ACG_rep/1752_35_Yin.

  • Yongfeng, N. (2004). Source, type, amount and effect of mining waste. Asia-Pacific Regional Center for Hazardous Waste Management Training and Technology Transfer Solid Waste Institute, Department of Environmental Science and Engineering, Tsinghua University, pp. 1–20.

  • Zhang, L., Ahmari, S., & Zhang, J. (2011). Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Construction and Building Materials, 25(9), 3773–3781.

    Article  Google Scholar 

  • Zhang, Y., & Sun, S. (2020). Study on the reclamation and ecological reconstruction of abandoned land in mining area, 4th International Symposium on Resource Exploration and Environmental Science, IOP Publishing Conf. Series: Earth and Environmental Science 514, 1–4. doi:https://doi.org/10.1088/1755-1315/514/2/022073.

  • Zloch, J., Adamcová, D., Šindelář, O., Šourková, M., & Vaverková, M. D. (2020). Testing of phytotoxicity of mining waste to determine the direction of future development. AIMS Environmental Science, 7(4), 324–334. https://doi.org/10.3934/environsci.2020021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully thank professors Pierre Kalenga Ngoy (posthumously), Arthur Kaniki Tshiamala and Kitobo Samson from the Applied Sciences Faculty (University of Lubumbashi) as well as academics and practitioners, from different regions of the world, given that their different researches and high quality publications on the management of mine wastes and flotation tailings, and particularly those generated by the copper industry of Katanga (DR Congo), have usefully inspired and served me in the preparation of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Shengo.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shengo, L.M. Review of Practices in the Managements of Mineral Wastes: The Case of Waste Rocks and Mine Tailings. Water Air Soil Pollut 232, 273 (2021). https://doi.org/10.1007/s11270-021-05198-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05198-w

Keywords

Navigation