Skip to main content
Log in

Flexomagneticity in buckled shear deformable hard-magnetic soft structures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure. The mathematical modeling begins with the Timoshenko beam model to find the governing equations and non-classical boundary conditions based on shear deformations. Flexomagneticity evolves at a small scale and dominant at micro/nanosize structures. Meanwhile, the well-known Eringen’s-type model of nonlocal strain gradient elasticity is integrated with the mathematical process to fulfill the scaling behavior. From the viewpoint of the solution, the displacement of the physical model after deformation is carried out as the analytical solution of the Galerkin weighted residual method (GWRM), helping us obtain the numerical outcomes on the basis of the simple end conditions. The best of our achievements display that considering shear deformation is essential for nanobeams with larger values of strain gradient parameter and small amounts of the nonlocal coefficient. Furthermore, we showed that the flexomagnetic (FM) effect brings about more noticeable shear deformations’ influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\varepsilon _{xx}\) :

Axial strain

\(\gamma _{xz}\) :

Shear strain

\(\eta _{xxz}\) :

Gradient of the axial elastic strain

\(C_{11}\) :

Elastic modulus

\(\sigma _{xx}\) :

Axial stress

\(\tau _{xz}\) :

Shear stress

\(f_{31}\) :

Component of the fourth-order flexomagnetic coefficients tensor

\(a_{33}\) :

Component of the second-order magnetic permeability tensor

\(q_{31}\) :

Component of the third-order piezomagnetic tensor

\(\xi _{xxz}\) :

Component of the higher-order hyper-stress tensor

\(B_{z}\) :

Magnetic flux

\(H_{z}\) :

Component of magnetic field

\(g_{31}\) :

Influence of the sixth-order gradient elasticity tensor

q :

Third-order piezomagnetic tensor

a :

Second-order magnetic permeability tensor

g :

sixth-order gradient elasticity tensor

C :

Fourth-order elasticity coefficient tensor

f :

Fourth-order flexomagnetic tensor

r :

Fifth-order tensor

\(u_{i}(i=1,3)\) :

Displacement in the x and z directions

u and w :

Axial and transverse displacements of the mid-plan

\(\phi \) :

Rotation of beam elements around the y axis

z :

Thickness coordinate

\(\psi \) :

External magnetic potential

\(\Psi \) :

Magnetic potential function

\(l\left( \mathrm{nm} \right) \) :

Strain gradient length scale parameter

\(\mu \left( \mathrm{nm} \right) ^{2}=\left( {e_{0} a} \right) ^{2}\) :

Nonlocal parameter

\(X_{m}\) :

Residue of the equations

\(k_{s}\) :

Shear correction factor

\(N_{x}\) :

Axial stress resultant

\(Q_{x}\) :

Shear stress resultant

\(M_{x}\) :

Moment stress resultant

\(T_{xxz}\) :

Hyper stress resultant

References

  1. Diandra, L.L.-P., Rieke, R.D.: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996)

    Google Scholar 

  2. Fei, C., Zhang, Y., Yang, Z., Liu, Y., Xiong, R., Shi, J., Ruan, X.: Synthesis and magnetic properties of hard magnetic (CoFe2O4)-soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. J. Magn. Magn. Mater. 323, 1811–1816 (2011)

    ADS  Google Scholar 

  3. Reddy, V.A., Pathak, N.P., Nath, R.: Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J. Alloys Compd. 543, 206–212 (2012)

    Google Scholar 

  4. Karimi, Z., Mohammadifar, Y., Shokrollahi, H., Khameneh Asl, S., Yousefi, G., Karimi, L.: Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    ADS  Google Scholar 

  5. Obaidat, I., Bashar, I., Haik, Y.: Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5, 63–89 (2015)

    Google Scholar 

  6. Rajath, P.C., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G., Nigam, A.K.: Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: a comparative study. J. Alloys Compd. 453, 298–303 (2008)

    Google Scholar 

  7. Wang, J., Deng, T., Dai, Y.: Comparative study on the preparation procedures of cobalt ferrites by aqueous processing at ambient temperatures. J. Alloys Compd. 419, 155–161 (2006)

    Google Scholar 

  8. Khandekar, M.S., Kamble, R.C., Patil, J.Y., Kolekar, Y.D., Suryavanshi, S.S.: Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method. J. Alloys Compd. 509, 1861–1865 (2011)

    Google Scholar 

  9. Kim, D.H., Nikles, D.E., Johnson, D.T., Brazel, C.S.: Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J. Magn. Magn. Mater. 320, 2390–2396 (2008)

    ADS  Google Scholar 

  10. Morais, P.C.: Photoacoustic spectroscopy as a key technique in the investigation of nanosized magnetic particles for drug delivery systems. J. Alloys Compd. 483, 544–548 (2009)

    Google Scholar 

  11. Deraz, N.M.: Glycine-assisted fabrication of nanocrystalline cobalt ferrite system. J. Anal. Appl. Pyrol. 88, 103–109 (2010)

    Google Scholar 

  12. Kabychenkov, A.F., Lisovskii, F.V.: Flexomagnetic and flexoantiferromagnetic effects in centrosymmetric antiferromagnetic materials. Tech. Phys. 64, 980–983 (2019)

    Google Scholar 

  13. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Physical Review B 79, 165433 (2009)

    ADS  Google Scholar 

  14. Lukashev, P., Sabirianov, R.F.: Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 094417 (2010)

    ADS  Google Scholar 

  15. Ma, W.: Flexoelectricity: strain gradient effects in ferroelectrics. Phys. Scr. 129, 180–183 (2007)

    Google Scholar 

  16. Lee, D., Yoon, A., Jang, S.Y., Yoon, J.-G., Chung, J.-S., Kim, M., Scott, J.F., Noh, T.W.: Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011)

    ADS  Google Scholar 

  17. Nguyen, T.D., Mao, S., Yeh, Y.-W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25, 946–974 (2013)

    Google Scholar 

  18. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)

    ADS  Google Scholar 

  19. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013)

    ADS  Google Scholar 

  20. Yurkov, A.S., Tagantsev, A.K.: Strong surface effect on direct bulk flexoelectric response in solids. Appl. Phys. Lett. 108, 022904 (2016)

    ADS  Google Scholar 

  21. Wang, B., Gu, Y., Zhang, S., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater Sci. 106, 100570 (2019)

    Google Scholar 

  22. Cross, L.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    ADS  Google Scholar 

  23. Ma, W., Cross, L.E.: Observation of the flexoelectric effect in relaxor \(\text{ Pb } (\text{ Mg}_{{1/3}}\text{ Nb}_{{2/3}})\text{ O}_{{3}}\) ceramics. Appl. Phys. Lett. 78, 2920–21 (2001)

    ADS  Google Scholar 

  24. Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)

    ADS  Google Scholar 

  25. Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F.: Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007)

    ADS  Google Scholar 

  26. Eremeyev, V.A., Ganghoffer, J.-F., Konopinska-Zmysłowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103213 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Esmaeili, M., Tadi Beni, Y.: Vibration and buckling analysis of functionally graded flexoelectric smart beam. J. Appl. Comput. Mech. 5, 900–917 (2019)

    Google Scholar 

  28. Malikan, M., Eremeyev, V.A.: On the dynamics of a visco-piezo-flexoelectric nanobeam. Symmetry 12, 643 (2020)

    Google Scholar 

  29. Singhal, A., Sedighi, H.-M., Ebrahimi, F., Kuznetsova, I.: Comparative study of the flexoelectricity effect with a highly/weakly interface in distinct piezoelectric materials (PZT-2, PZT-4, PZT-5H, LiNbO3, BaTiO3). Waves Random Compl. Media (2019). https://doi.org/10.1080/17455030.2019.1699676

    Article  Google Scholar 

  30. Mawassy, N., Reda, H., Ganghoffer, J.-F., Eremeyev, V.A., Lakiss, H.: A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media. Int. J. Eng. Sci. 158, 103410 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Ebnali Samani, M.S., Tadi Beni, Y.: Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Express 5, 085018 (2018)

    ADS  Google Scholar 

  32. Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch. Appl. Mech. 90, 2025–2070 (2020)

    ADS  MATH  Google Scholar 

  33. Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2019)

    MATH  Google Scholar 

  34. Arefi, M., Zenkour, A.M.: Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates. Mech. Res. Commun. 84, 27–42 (2017)

    Google Scholar 

  35. Ebrahimi, F., Barati, M.R.: Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams. Mech. Syst. Signal Process. 93, 445–459 (2017)

    ADS  Google Scholar 

  36. Zenkour, A.M., Arefi, M., Alshehri, N.A.: Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets. Results Phys. 7, 2172–2182 (2017)

    ADS  Google Scholar 

  37. Sun, X.-P., Hong, Y.-Z., Dai, H.-L., Wang, L.: Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field. Acta Mech. Solida Sin. 30, 465–473 (2017)

    Google Scholar 

  38. Balasubramanian, K.R., Sivapirakasam, S.P., Anand, R.: Linear buckling and vibration behavior of piezoelectric/piezomagnetic beam under uniform magnetic field. Appl. Mech. Mater. 592–594, 2071–2075 (2014)

    Google Scholar 

  39. Alibeigi, B., Beni, Y.T.: On the size-dependent magneto/electromechanical buckling of nanobeams. Eur. Phys. J. Plus 133, 398 (2018)

    Google Scholar 

  40. Arefi, M., Kiani, M., Civalek, O.: 3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets. Appl. Phys. A 126, 76 (2020)

    ADS  Google Scholar 

  41. Saadatfar, M.: Stress redistribution analysis of piezomagnetic rotating thick-walled cylinder with temperature-and moisture-dependent material properties. J. Appl. Comput. Mech. 6, 90–104 (2020)

    Google Scholar 

  42. Marin, M., Öchsner, A.: An initial boundary value problem for modeling a piezoelectric dipolar body. Contin. Mech. Thermodyn. 30, 267–278 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Sidhardh, S., Ray, M.C.: Flexomagnetic response of nanostructures. J. Appl. Phys. 124, 244101 (2018)

    ADS  Google Scholar 

  44. Zhang, N., Zheng, Sh, Chen, D.: Size-dependent static bending of flexomagnetic nanobeams. J. Appl. Phys. 126, 223901 (2019)

    ADS  Google Scholar 

  45. Malikan, M., Eremeyev, V.A.: Free vibration of flexomagnetic nanostructured tubes based on stress-driven nonlocal elasticity, analysis of shells, plates, and beams. Adv. Struct. Mater. 134, 215–226 (2020)

    MATH  Google Scholar 

  46. Malikan, M., Eremeyev, V.A.: On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6758

    Article  MATH  Google Scholar 

  47. Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10, 1762 (2020)

    Google Scholar 

  48. Malikan, M., Uglov, N.S., Eremeyev, V.A.: On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int. J. Eng. Sci. 157, 10339 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Malikan, M., Wiczenbach, T., Eremeyev, V.A.: On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions. Contin. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-00971-y

    Article  MathSciNet  Google Scholar 

  50. Malikan, M., Eremeyev, V.A., Żur, K.K.: Effect of axial porosities on flexomagnetic response of in-plane compressed piezomagnetic nanobeams. Symmetry 12, 1935 (2020). https://doi.org/10.3390/sym12121935

    Article  Google Scholar 

  51. Malikan, M., Eremeyev, V.A.: Flexomagnetic response of buckled piezomagnetic composite nanoplates. Compos. Struct. 267, 113932 (2021)

    Google Scholar 

  52. Malikan, M., Eremeyev, V.A.: Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis. Compos. Struct. 271(114179) (2021). https://doi.org/10.1016/j.compstruct.2021.114179

  53. Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    MathSciNet  MATH  Google Scholar 

  54. She, G.-L., Liu, H.-B., Karami, B.: Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin-Walled Struct. 160, 107407 (2021)

    Google Scholar 

  55. Malikan, M., Eremeyev, V.A., Sedighi, H.M.: Buckling analysis of a non-concentric double-walled carbon nanotube. Acta Mech. (2020). https://doi.org/10.1007/s00707-020-02784-7

    Article  MathSciNet  Google Scholar 

  56. Malikan, M., Eremeyev, V.A.: A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. Compos. Struct. 249, 112486 (2020)

    Google Scholar 

  57. Turco, E.: Numerically driven tuning of equilibrium paths for pantographic beams. Contin. Mech. Thermodyn. 31, 1941–1960 (2019)

    ADS  MathSciNet  Google Scholar 

  58. Marin, M., Öchsner, A., Taus, D.: On structural stability for an elastic body with voids having dipolar structure. Contin. Mech. Thermodyn. 32, 147–160 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Malikan, M.: Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage. Multi. Model. Mater. Struct. 15, 50–78 (2019)

  60. Malikan, M.: Temperature influences on shear stability of a nanosize plate with piezoelectricity effect. Multi. Model. Mater. Struct. 14, 125–142 (2018)

  61. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    ADS  MATH  Google Scholar 

  63. Ansari, R., Sahmani, S., Arash, B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53–62 (2010)

    ADS  Google Scholar 

  64. Akbarzadeh Khorshidi, M.: The material length scale parameter used in couple stress theories is not a material constant. Int. J. Eng. Sci. 133, 15–25 (2018)

    Google Scholar 

  65. Yang, H., Timofeev, D., Giorgio, I., et al.: Effective strain gradient continuum model of metamaterials and size effects analysis. Contin. Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00910-3

    Article  Google Scholar 

  66. Abali, B.E.: Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation. Contin. Mech. Thermodyn. 31, 885–894 (2019)

    ADS  MathSciNet  Google Scholar 

  67. Karami, B., Shahsavari, D., Janghorban, M., Li, L.: On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory. Int. J. Eng. Sci. 144, 103143 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Malikan, M., Nguyen, V.B., Tornabene, F.: Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng. Sci. Technol. Int. J. 21, 778–786 (2018)

    Google Scholar 

  69. Malikan, M., Dimitri, R., Tornabene, F.: Transient response of oscillated carbon nanotubes with an internal and external damping. Compos. B Eng. 158, 198–205 (2019)

    Google Scholar 

  70. Malikan, M., Krasheninnikov, M., Eremeyev, V.A.: Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int. J. Eng. Sci. 148, 103210 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Kumar Jena, S., Chakraverty, S., Tornabene, F.: Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model. Mater. Res. Express 6, 0850f2 (2019)

    Google Scholar 

  72. Malikan, M., Eremeyev, V.A.: Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh–Ritz method. Mater. Res. Express 7, 025005 (2020)

    ADS  Google Scholar 

  73. Karami, B., Janghorban, M., Rabczuk, T.: Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Compos. B Eng. 182, 107622 (2020)

    Google Scholar 

  74. Sahmani, S., Safaei, B.: Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation. Thin-Walled Struct. 143, 106226 (2019)

    Google Scholar 

  75. Fan, F., Safaei, B., Sahmani, S.: Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis. Thin-Walled Struct. 159, 107231 (2021)

    Google Scholar 

  76. Simsek, M., Yurtcu, H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 9, 378–386 (2013)

    Google Scholar 

  77. Ansari, R., Sahmani, S., Rouhi, H.: Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys. Lett. A 375, 1255–1263 (2011)

    ADS  Google Scholar 

  78. Duan, W.H., Wang, C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    ADS  Google Scholar 

  79. Duan, W.H., Wang, C.M., Zhang, Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 24305 (2007)

    Google Scholar 

Download references

Acknowledgements

V.A. Eremeyev acknowledges the support of the Government of the Russian Federation (contract No. 14.Z50.31.0046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Malikan.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikan, M., Eremeyev, V.A. Flexomagneticity in buckled shear deformable hard-magnetic soft structures. Continuum Mech. Thermodyn. 34, 1–16 (2022). https://doi.org/10.1007/s00161-021-01034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01034-y

Keywords

Navigation