Skip to main content
Log in

Ionizable Cyclofructan 6-Based Stationary Phases for Hydrophilic Interaction Liquid Chromatography Using Superficially Porous Particles

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

One of the challenges of hydrophilic interaction liquid chromatography (HILIC) is the development of hydrolytically stable stationary phases. In this work, reproducible synthesis, characterization, and application of two new stable cyclofructan-6 (CF6) based stationary phases for HILIC, and mixed-mode chromatography are described. Herein, CF6 was covalently bonded to benzoic acid (BCF-6) and propyl sulfonic acid (SCF-6) groups, respectively. In past reports, sulfonating cyclofructan and bonding it to silica was challenging in terms of reproducibility. The derivatized cyclofructan was then bonded to 2.7 µm superficially porous particles (SPPs), producing a hydrolytically stable phase. The selectivity of the new SPP silica stationary phases was compared to a commercial native cyclofructan-based HILIC column. All the columns in this study were tested for their efficiency, hydrophilicity, and electrostatic character to assess their unique selectivity among 33 commercial columns. All three cyclofructan-6 based stationary phases were subjected to stability tests under a constant flow rate of HILIC mobile phases using acidic, neutral, and basic probe molecules. No significant shift in retention time was observed over one week of continuous operation. The BCF-6 stationary phase showed a significant change in retention of acidic, neutral, and basic as a function of pH in the range 5.5 to 3.5 as compared to FructoShell-N and SCF-6. The two new columns were evaluated using 49 different analytes, including a wide range of structural moieties. Most of the test probes are of biological and pharmaceutical interest.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jandera P, Janás P (2017) Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta 967:12–32

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Jiang C, Armstrong DW (2008) Considerations on HILIC and polar organic solvent-based separation: use of cyclodextrin and macrocyclic glycopetide stationary phases. J Sep Sci 31:1980–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armstrong DW, Jin HL (1989) Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides and sugar alcohols with stable cyclodextrin bonded phase columns. J Chromatogr A 462:0219–0232

    Article  CAS  Google Scholar 

  4. Armstrong DW, Jin HL (1989) Liquid chromatographic separation of anomeric forms of saccharides with cyclodextrin bonded phases. Chirality 1:27–37

    Article  CAS  PubMed  Google Scholar 

  5. Jin HL, Stalcup AM, Armstrong DW (1988) Separation of cyclodextrins using cyclodextrin bonded phases. J Liq Chrom 11:3295–3304

    Article  CAS  Google Scholar 

  6. Han SM, Armstrong DW (1987) Use of microcolumn liquid chromatography with a chiral stationary phase for the separation of low-resolution enantiomers. J Chromatogr 389:256–260

    Article  CAS  PubMed  Google Scholar 

  7. Ravel FM, Caputo AG, Butts ET (1976) Separation of carbohydrates on a new polar bonded phase material. J Chromatogr 126:731–740

    Article  Google Scholar 

  8. Linden JC, Lawhead CL (1975) Liquid chromatography of saccharides. J Chromatogr 105:125–133

    Article  CAS  Google Scholar 

  9. Palmer JK (1975) A versatile system for sugar analysis via liquid chromatography. Anal Lett 8(3):215–224

    Article  CAS  Google Scholar 

  10. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  PubMed  Google Scholar 

  11. Shu Y, Lang JC, Breitbach ZS, Qiu H, Smuts JP, Shimobe MK, Yasuda M, Armstrong DW (2015) Separation of therapeutic peptides with cylcofructan and glycopeptides based columns in hydrophilic interaction liquid chromatography. J Chromatogr A 1390:50–61

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida T (2004) Peptide separation by hydrophilic-interaction chromatography: a review. J Biochem Biophys Methods 60:265–280

    Article  CAS  PubMed  Google Scholar 

  13. Berthod A, Chang SSC, Kullman JPS, Armstrong DW (1998) Practice and mechanism of HPLC oligosaccharide separation with a cylcodextrin bonded phase. Talanta 45:1001–1012

    Article  Google Scholar 

  14. Fu Q, Liang T, Li Z, Xu X, Ke Y, Jin Y, Liang X (2013) Separation of carbohydrates using hydrophilic interaction liquid chromatography. Carbohyd Res 379:13–17

    Article  CAS  Google Scholar 

  15. Dejaegher B, Heyden YV (2010) HILIC methods in pharmaceutical analysis. J Sep Sci 33:698–715

    Article  CAS  PubMed  Google Scholar 

  16. Cho Y, Tsuchiya S, Yoshioka R, Omura T, Konoki K, Oshima Y, Yamashta MY (2015) The presence of 12β-deoxydecarbamoylsaxitoxin in the Japanese toxic dinoflagellate Alexandrium determined by simultaneous analysis for paralytic shellfish toxins using HILIC-LC–MS/MS. Harmful Algae 49:58–67

    Article  CAS  Google Scholar 

  17. Jansson D, Åstot C (2015) Analysis of paralytic shellfish toxins, potential chemical threat agents, in food using hydrophilic interaction liquid chromatography–mass spectrometry. J Chromatogr A 1417:41–48

    Article  CAS  PubMed  Google Scholar 

  18. Jandera P (2011) Stationary and mobile phases in hydrophilic interation chromatography: a review. Anal Chim Acta 692:1–25

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen HP, Schug KA (2008) The advantage of ESI-MS detection in conjugation with HILIC mode separation: fundamentals and applications. J Sep Sci 31:1465–1480

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell CR, Bao Y, Benz NJ, Zhang S (2009) Comparison of the sensitivity of evaporative universal detectors and LC/MS in the HILIC and the reversed-phase HPLC modes. J Chromatogr B 877:4133–4139

    Article  CAS  Google Scholar 

  21. Zimmermann A, Horak J, Sievers-Engler A, Sanwald C, Lindner W, Kramer M, Lammerhofer M (2016) Surface-crosslinked poly(3-mercaptopropyl)methylsiloxane-coatings on silica as new flatform for low-bleed mass spectrometry-compatible functionalized stationary phases synthesized via thiol-ene click reaction. J Chromatogr A 1436:73–83

    Article  CAS  PubMed  Google Scholar 

  22. Kirkland JJ, Henderson JW, DeStefano JJ, van Straten MA, Claessens HA (1997) Stability of silica-based, endcapped columns with pH 7 and 11 mobile phases for reversed-phase high-performance liquid chromatography. J Chromatogr A 762:97–112

    Article  CAS  PubMed  Google Scholar 

  23. Qian K, Peng Y, Zhang F, Yang B, Liang X (2018) Preparation of a low bleeding polar stationary phase for hydrophilic interaction liquid chromatography. Talanta 182:500–504

    Article  CAS  PubMed  Google Scholar 

  24. Huang Z, Richards MA, Zha Y, Francis R, Lozano R, Ruan J (2009) Determination of inorganic pharmaceutical counterions using hydrophilic interaction chromatography coupled with a Corona® CAD detector. J Pharm Biomed Anal 50:809–814

    Article  CAS  PubMed  Google Scholar 

  25. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N (2008) Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 1184:474–503

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Wahab MF, Breitbach ZS, Armstrong DW (2016) Carboxylated cyclofructan 6 as a hydrolytically stable high efficiency stationary phase for hydrophilic interaction liquid chromatography and mixed mode separations. Anal Methods 8:6038–6045

    Article  CAS  Google Scholar 

  27. Maier V, Kalikova K, Pribylka A, Vozka J, Smuts JP, Svidrnoch M, Sevcik J, Armstrong DW, Tesarova E (2014) Isopropyl derivative of cyclofructan 6 as chiral selector in liquid chromatography and capillary electrophoresis. J Chromatogr A 1338:197–200

    Article  CAS  PubMed  Google Scholar 

  28. Zhang YJ, Huang MX, Zhang YP, Armstrong DW, Breitbach ZS, Ryoo JJ (2013) Use of sulfated cyclofructan 6 and sulfated cyclodextrins for the chiral separation of four basic pharmaceuticals by capillary electrophoresis. Chirality 25:735–742

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Breitbach ZS, Wang C, Armstrong DW (2010) The use of cyclofructans as novel chiral selectors for gas chromatography. Analyst 135:1076–1083

    Article  CAS  PubMed  Google Scholar 

  30. Sun P, Wang W, Breitbach ZS, Zhang Y, Armstrong DW (2009) Development of new HPLC chiral stationary phases based on native and derivatized cyclofructans. Anal Chem 21:10215–10226

    Article  CAS  Google Scholar 

  31. Qiu H, Loukotkova L, Sun P, Tesarova E, Bosakove Z, Armstrong DW (2011) Cyclofructan 6 based stationary phases for hydrophilic interaction liquid chromatography. J Chromatogr A 1218:270–279

    Article  CAS  PubMed  Google Scholar 

  32. Kozlik P, Simova V, Kalikova K, Bosakova Z, Armstrong DW, Tesarova E (2012) Effect of silica gel modification with cyclofructans on properties of hydrophilic interaction liquid chromatography stationary phases. J Chromatogr A 1257:58–65

    Article  CAS  PubMed  Google Scholar 

  33. Dolzan MD, Spudeit DA, Breitbach ZS, Barber WE, Micke GA, Armstrong DW (2014) Comparison of superficially porous and fully porous silica supports used for a cyclofrucatan 6 hydrophilic interaction liquid chromatographic stationary phase. J Chromatogr A 1365:124–130

    Article  CAS  PubMed  Google Scholar 

  34. Padivitage NLT, Armstrong DW (2011) Sulfonated cyclofructan 6 based stationary phase for hydrophilic interaction chromatography. J Sep Sci 34:1636–1647

    Article  CAS  PubMed  Google Scholar 

  35. Hesek D, Lee M, Noll BC, Fisher JF, Mobashery S (2009) Complications from dual roles of sodium hydride as a base and as a reducing agent. J Org Chem 74:2567–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jung M, Francotte E (1996) Comparison of γ-cyclodextrin sulfobutyl ether and unmodified gamma-cyclodextrin as chiral selectors in capillary electrophoresis. J Chromatogr A 755:81–88

    Article  CAS  Google Scholar 

  37. Gong K, Wang H, Ren X, Wang Y, Chen J (2015) β-Cyclodextrin-butane sulfonic acid: an efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Green Chem 17:3141–3147

    Article  CAS  Google Scholar 

  38. Ma DY, Zhang YM, Xu JN (2016) The synthesis and process optimization of sulfobutyl ether beta-cyclodextrin derivatives. Tetrahedron 72:3105–3112

    Article  CAS  Google Scholar 

  39. Grard S, Elfakir C, Dreux M (2001) Analysis of sulfobutyl ether-beta-cyclodextrin mixtures by ion-spray mass spectrometry and liquid chromatography-ion-spray mass spectrometry. J Chromatogr A 952:79–87

    Article  Google Scholar 

  40. Dinh NP, Jonsson T, Irgum K (2011) Probing the interaction mode in hydrophilic interaction chromatography. J Chromatogr A 1218:5880–5891

    Article  CAS  PubMed  Google Scholar 

  41. Ibrahim MEA, Liu Y, Lucy CA (2012) A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography. J Chromatogr A 1260:126–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AZYP, LLC supported all the studies in this project. The authors thank Dr. J.T. Lee and Dr. M. Farooq Wahab for their assistance in this work. The authors would like to thank Agilent Technologies for providing silica particles. The data for all the commercial columns in Figure 3 was provided by Dr. Kunt Irgum (Umea University, Sweden), Dr. Charles A. Lucy, and Dr. M.E.A. Ibrahim (University of Alberta, Canada).

Funding

This research project was supported by the Robert A. Welch Foundation (Y-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wey, M., Firooz, S.K. et al. Ionizable Cyclofructan 6-Based Stationary Phases for Hydrophilic Interaction Liquid Chromatography Using Superficially Porous Particles. Chromatographia 84, 821–832 (2021). https://doi.org/10.1007/s10337-021-04063-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04063-6

Keywords

Navigation