Skip to main content
Log in

Optimization of the Surface Structure of the Si Substrate for Si-Al Bonding Using Simulation by the Phase Field Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We investigated the optimal surface structure of an n-type Si substrate for Si-Al bonding (which prevents high-energy barrier formation) using simulation by the phase field method. The surface structure of the substrate contained a groove to suppress regrowth layer formation at the bottom of the groove. We determined the appropriate width and depth of the groove to effectively suppress the regrowth layer. The features of the regrowth layer suppression mechanism were clarified as the following: narrowing the groove caused the Al concentration to increase inside the groove and, in turn, decreased the degree of supercooling of the Si-Al liquid. However, when the groove was too narrow, the radius of curvature at the bottom of the groove decreased, and the equilibrium melting point of the Si-Al liquid rose due to the Gibbs–Thomson effect. On the other hand, the narrow groove increased the Al concentration, leading to decrease of the equilibrium melting point of the Si-Al liquid. This implies that there is always an optimum value for the width and the depth of the groove by which the regrowth layer is effectively suppressed through forming the groove in the Si surface for the Si-Al bonding process. Any groove morphology with the growth ratio (the ratio of the regrowth layer at the bottom to that at the top of the groove) less than 0.3 is appropriate to achieve good ohmic contact; however, it is considered that the groove with periodic length of 9.4 μm and aspect ratio around 0.2 is the best because of the ease of manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10

Similar content being viewed by others

References

  1. S.L. Matlow, and E.L. Ralph, J. Appl. Phys. 30, 541 (1959). https://doi.org/10.1063/1.1702400.

    Article  CAS  Google Scholar 

  2. F.M. Roberts, and E.L.G. Willkinson, J. Mater. Sci. 6, 189 (1971). https://doi.org/10.1007/BF00550012.

    Article  CAS  Google Scholar 

  3. J. Onuki, M. Suwa, and K. Soeno, J. Jpn. Inst. Metals 42, 1029 (1978). https://doi.org/10.2320/jinstmet1952.42.11_1029.

    Article  CAS  Google Scholar 

  4. M. Ghosh, S. Pitale, S.G. Singh, H. Manasawala, V. Karki, M. Singh, K. Singh, G.D. Patra, and S. Sen, Mater. Sci. Semicond. Process. 121, 105350 (2021). https://doi.org/10.1016/j.mssp.2020.105350.

    Article  CAS  Google Scholar 

  5. T. Lin, J.-N. Xie, S.-H. Ning, Q.-M. Li, and B. Li, Mater. Sci. Semicond. Process. 124, 105622 (2021). https://doi.org/10.1016/j.mssp.2020.105622.

    Article  CAS  Google Scholar 

  6. Y. Wu, L. Jia, Z. Lina, M. Hong, S. Wang, and Y. Zhang, Curr. Appl. Phys. 19, 521 (2019). https://doi.org/10.1016/j.cap.2019.02.008.

    Article  Google Scholar 

  7. L. Huang, M. Xia, and X. Gu, J. Cryst. Growth 531, 125353 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125353.

    Article  CAS  Google Scholar 

  8. D.J. Perello, S.H. Chae, S. Song, and Y.H. Lee, Nat. Commun. 6, 7809 (2015). https://doi.org/10.1038/ncomms8809.

    Article  CAS  Google Scholar 

  9. B. Liu, H. Xie, D. Niu, S. Wang, Y. Zhao, Y. Liu, and Y. Gao, Results Phys. 18, 103222 (2020). https://doi.org/10.1016/j.rinp.2020.103222.

    Article  Google Scholar 

  10. N. Provatas, and K. Elder, Phase-Field Methods in Materials Science and Engineering (Weinheim: Wiley-VCH, 2010). https://doi.org/10.1002/9783527631520.

    Book  Google Scholar 

  11. S.B. Biner, Programming Phase-Field Modeling (Berlin: Springer, 2017). https://doi.org/10.1007/978-3-319-41196-5.

    Book  Google Scholar 

  12. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phys. Rev. A 45, 7424 (1992). https://doi.org/10.1103/PhysRevA.45.7424.

    Article  CAS  Google Scholar 

  13. J.A. Warren, and W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995). https://doi.org/10.1016/0956-7151(94)00285-P.

    Article  CAS  Google Scholar 

  14. J.F. MacCarthy, Acta Mater. 45, 4077 (1997). https://doi.org/10.1016/S1359-6454(97)00082-7.

    Article  Google Scholar 

  15. Y. Saito, Statistical Physics of Crystal Growth, World Scientific, p. 104 (1996). https://doi.org/10.1142/3261.

  16. D. Hofmann, M. Bickermann, R. Eckstein, M. Kolbl, St. G. Muller, E. Schmitt, A. Weber and A. Winnacker, J. Crystal Growth 198–199, 1005 (1999). https://doi.org/10.1016/S0022-0248(98)01212-3.

  17. T. Kimoto, A. Ito, and H. Matsunami, J. Appl. Phys. 81, 3494 (1997). https://doi.org/10.1063/1.365048.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Mr. M. Endoh for stimulating discussions, Mr. K. Shinotsuka for assistance in the simulation, and Dr. Y. Zare for critical reading of the manuscript.

Funding

This research is financially supported by the Light Metal Educational Foundation, Inc. under the funds for Encouragement and Promotion of Research, Study and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sasajima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, K., Yuchi, R., Sasajima, Y. et al. Optimization of the Surface Structure of the Si Substrate for Si-Al Bonding Using Simulation by the Phase Field Method. Journal of Elec Materi 50, 4770–4780 (2021). https://doi.org/10.1007/s11664-021-08998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08998-2

Keywords

Navigation