Skip to main content
Log in

Surface Plasmon Resonance-Enhanced Bathochromic-Shifted Photoluminescent Properties of Pure and Structurally Modified Electrospun Poly(methyl methacrylate) (PMMA) Nanofibers Incorporated with Green-Synthesized Silver Nanoparticles

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) with size of 5 nm to 10 nm have been prepared using Couroupita guianensis flower and characterized using various structural and molecular analysis techniques. We synthesized pure, surface-roughened and coaxial hollow electrospun poly(methyl methacrylate) (PMMA) nanofibers from poly(ethylene oxide)–poly(methyl methacrylate) (PEO–PMMA) blends. Silver nanoparticle-incorporated PMMA nanofibers were prepared by dispersion method. Optical investigation of the silver nanoparticle-incorporated PMMA nanofibers was carried out by photoluminescence (PL) analysis, revealing that their photoluminescent properties depended on the concentration of nanoparticles incorporated. A surface plasmon resonance-enhanced bathochromic shift was observed for all the samples, with the structurally modified PMMA samples showing unique PL properties in terms of intensity and peak shifts depending on their structural modifications. The surface plasmon resonance of silver nanoparticles added with the transparency of PMMA results in enhanced PL properties. Such silver nanoparticle-incorporated PMMA nanofibers could find various applications in optical, nanophotonic devices, etc.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  2. V. Thavasi, G. Singh, and S. Ramakrishna, Energy Environ. Sci. 1, 205 (2008).

    Article  CAS  Google Scholar 

  3. A. Frenot, and I.S. Chronakis, Curr. Opin. Colloid Interface Sci. 8, 64 (2003).

    Article  CAS  Google Scholar 

  4. N. Bhardwaj, and S.C. Kundu, Biotechnol. Adv. 28, 325 (2010).

    Article  CAS  Google Scholar 

  5. H. Dong, K.E. Strawhecker, J.F. Snyder, J.A. Orlicki, R.S. Reiner, and A.W. Rudie, Carbohydr. Polym. 87, 2488 (2012).

    Article  CAS  Google Scholar 

  6. S. Bhakya, S. Muthukrishnan, M. Sukumaran, and M. Muthukumar, Appl. Nanosci. 6, 755 (2016).

    Article  CAS  Google Scholar 

  7. K.M.M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, and R.A.A. Ammar, Arab. J. Chem. 3, 135 (2010).

    Article  CAS  Google Scholar 

  8. P. Philip, T. Jose, K.S. Sarath, and S. Kuriakose, J. Bioact. Compat. Polym. 36, 93 (2021). https://doi.org/10.1177/0883911521997856.

    Article  CAS  Google Scholar 

  9. P. Raghavan, D. Lim, J. Ahn, C. Nah, D.C. Sherrington, H. Ryu, and H. Ahn, React. Funct. Polym. 72, 915 (2012).

    Article  CAS  Google Scholar 

  10. P. Philip, P. Thomas, E.T. Jose, K.C. Philip, and P.C. Thomas, Bull. Mater. Sci. 42, 218 (2019).

    Article  Google Scholar 

  11. P. Philip, E.T. Jose, J.K. Chacko, K.C. Philip, and P.C. Thomas, Polym. Test. 74, 257 (2019).

    Article  CAS  Google Scholar 

  12. P. Philip, T. Jose, P. Manoj, and T. Sajini, J. Appl. Polym. Sci. 138, e50210 (2021). https://doi.org/10.1002/app.50210.

    Article  CAS  Google Scholar 

  13. P. Philip, T. Jose, and I.V. Vanchippurackal, J. Appl. Polym. Sci. 138, 50534 (2021). https://doi.org/10.1002/app.50534.

    Article  CAS  Google Scholar 

  14. P. Philip, T. Jose, A. Jose, and S.K. Cherian, Luminescence 36, 1032 (2021). https://doi.org/10.1002/bio.4029.

    Article  CAS  Google Scholar 

  15. P. Philip, T. Jose, K.V. Divya, and J.M. Kuthanappillily, PPTEC (2021). https://doi.org/10.1080/25740881.2020.1867173.

    Article  Google Scholar 

  16. M.K. Abyaneh, S. Jafarkhani, and S.K. Kulkarni, J. Exp. Nanosci. 6, 159 (2011).

    Article  Google Scholar 

  17. C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, and N. Mohan, Colloids Surf. B. 76, 50 (2010).

    Article  CAS  Google Scholar 

  18. D. Basak, S. Karan, and B. Mallik, Chem. Phys. Lett. 420, 115 (2006).

    Article  CAS  Google Scholar 

  19. K. Shameli, M.B. Ahmad, S.D. Jazayeri, P. Shabanzadeh, P. Sangpour, H. Jahangirian, and Y. Gharayebi, Chem. Cent. J. 6, 1 (2012).

    Article  Google Scholar 

  20. P. Logeswari, S. Silambarasan, and J. Abraham, J. Saudi Chem. Soc. 19, 311 (2015).

    Article  Google Scholar 

  21. T.V. Mathew, and S. Kuriakose, Colloids Surf. B. 101, 14 (2013).

    Article  CAS  Google Scholar 

  22. N.D. Singho, N.A.C. Lah, M.R. Johan, and R. Ahmad, Int. J. Res. Eng. Technol. 1, 231 (2012).

    Google Scholar 

  23. C. George, S. Kuriakose, S. George, and T. Mathew, Supramol. Chem. 23, 593 (2011).

    Article  CAS  Google Scholar 

  24. P. Banerjee, M. Satapathy, A. Mukhopahayay, and P. Das, Bioresour. Bioprocess. 1, 1 (2014).

    Article  Google Scholar 

  25. L. Mulfinger, S.D. Solomon, M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, and C. Boritz, J. Chem. Educ. 84, 322 (2007).

    Article  Google Scholar 

  26. P. Makvandi, N. Nikfarjam, N.S. Sanjani, and N.T. Qazvini, Bull. Mater. Sci. 38, 1625 (2015).

    Article  CAS  Google Scholar 

  27. G. Walters, and I.P. Parkin, J. Mater. Chem. 19, 574 (2009).

    Article  CAS  Google Scholar 

  28. J. Gao, J. Fu, C. Lin, J. Lin, Y. Han, X. Yu, and C. Pan, Langmuir 20, 9775 (2004).

    Article  CAS  Google Scholar 

  29. P. Thomas, and K.E. Abraham, J. Lumin. 158, 422 (2015).

    Article  CAS  Google Scholar 

  30. P. Philip, T. Jose, K.S. Sarath, and K.C. Philip, Mater. Today Proc. 33, 1402 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UGC and KSCSTE for funding the electrospinning device. We thank Dr. Nijoy P. Jose for proofreading and instrument operators in Mahatma Gandhi University, Cochin University, and Kerala University in India for providing timely technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomlal Jose.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, P., Jose, T., Prakash, J. et al. Surface Plasmon Resonance-Enhanced Bathochromic-Shifted Photoluminescent Properties of Pure and Structurally Modified Electrospun Poly(methyl methacrylate) (PMMA) Nanofibers Incorporated with Green-Synthesized Silver Nanoparticles. Journal of Elec Materi 50, 4834–4849 (2021). https://doi.org/10.1007/s11664-021-09003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09003-6

Keywords

Navigation