Skip to main content
Log in

Excited-State Absorption Assisted Optical Limiting Action of Potassium Dihydrogen Phosphate (KDP)–Polyethylene Oxide (PEO) Electrospun Nanofibers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

By employing different flow rates (0.1 mL/h, 0.4 mL/h, 0.6 mL/h) in an electrospinning route, potassium dihydrogen phosphate (KDP)–polyethylene oxide (PEO) nanofibers with different diameters were successfully prepared. Scanning electron microscopy (SEM) showed the formation of PEO nanofiber morphology with average diameters of 410 nm, 435 nm, and 439 nm for flow rates of 0.1 mL/h, 0.4 mL/h, and 0.6 mL/h, respectively. Using x-ray diffraction (XRD), the presence of KDP in the fiber matrix was confirmed from the intense diffraction peak at 2θ = 24°, which corresponds to the (200) plane of KDP, and the nanofiber exhibited variation in crystallite size, ranging from 30 nm to 41 nm with different flow rates. The lattice strain of the prepared samples decreased with increasing flow rate. A blueshift in the absorption edge and an increase in optical band gap were observed for spun fibers (215 nm, 6.04 eV) with bulk KDP (280 nm, 5.82 eV) due to changes in the dielectric properties of the material. From the recorded photoluminescence (PL) spectra, dominant green emission at 565 nm was observed. Electrospun KDP-PEO nanofibers exhibited a frequency doubling phenomenon with relative SHG efficiency twice that of KDP. In addition, intensity-dependent Z-scan measurements were performed with a Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG) laser as an excitation source (532 nm, 5 ns, 10 Hz). The excited-state absorption process played a dominant role in the observed nonlinearity in the KDP-PEO nanofibers. The demonstrated sequential two-photon absorption-based optical limiting action makes KDP-PEO nanofibers a versatile optical limiting material for eye safety devices against intense laser pulse.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. R. Nirmala, R. Navamathavan, S.J. Park, and H.Y. Kim, Nano-Micro Lett. 6, 89 (2014).

    Article  CAS  Google Scholar 

  2. C. Zhang, Y. Yan, Y. Sheng Zhao, and J. Yao, Phys. Chem. 109, 211 (2013).

    CAS  Google Scholar 

  3. Kenry, and C.T. Lim, Prog. Polym. Sci. 70, 1 (2017).

    Article  CAS  Google Scholar 

  4. R.N. Kostoff, R.G. Koytcheff, and C.G.Y. Lau, Technol. Forecast. Soc. Change. 74, 1733 (2007).

    Article  Google Scholar 

  5. G. Markovich, C.P. Collier, S.E. Henrichs, F. Remacle, R.D. Levine, and J.R. Heath, Acc. Chem. Res. 32, 415 (1999).

    Article  CAS  Google Scholar 

  6. C. Chen, Y. Tang, B. Vlahovic, and F. Yan, Nanoscale Res. Lett. 12, 451 (2017).

    Article  CAS  Google Scholar 

  7. Y.P. Sun, J.E. Riggs, K.B. Henbest, and R.B. Martin, J Nonlinear Opt. Phys. Mater. 09, 481 (2000).

    Article  CAS  Google Scholar 

  8. N. Balamurugan, and P. Ramasamy, Cryst. Growth Des. 6, 1642 (2006).

    Article  CAS  Google Scholar 

  9. C. Maunier, P. Bouchut, S. Bouillet, H. Cabane, R. Courchinoux, P. Defossez, J.C. Poncetta, and N. Ferriou-Daurios, Opt. Mater. 30, 88 (2007).

    Article  CAS  Google Scholar 

  10. T. Ludwig, C. Bohr, A. Queraltó, R. Frohnhoven, T. Fischer, and S. Mathur, Semicond. Semimet. 98, 1 (2018).

    Article  CAS  Google Scholar 

  11. S. Ibrahim, S.M. Mohd Yasin, N.M. Nee, R. Ahmad, and M.R. Johan, Solid State Commun. 152, 426 (2012).

    Article  CAS  Google Scholar 

  12. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, and M.A. Morsi, J. Mater. Res. Technol. 7, 419 (2018).

    Article  CAS  Google Scholar 

  13. X. Lu, H. Qu, and M. Skorobogatiy, Sci. Rep. 7, 2907 (2017).

    Article  CAS  Google Scholar 

  14. M.A. Firestone, M.A. Ratner, and T.J. Marks, Macromolecules 28, 6296 (1995).

    Article  CAS  Google Scholar 

  15. H. Cho, S.Y. Min, and T.W. Lee, Macromol. Mater. Eng. 298, 475 (2013).

    Article  CAS  Google Scholar 

  16. B. Dhandayuthapani, Y. Yasuhiko, T. Maekawa, and D.S. Kumar, Mater. Res. 14, 317 (2011).

    Article  CAS  Google Scholar 

  17. S. Zargham, S. Bazgir, A. Tavakoli, A. S. Rashidi, and R. Damerchely, J. Eng. Fibers. Fabr. 7 (2012).

  18. S. Gong, and W. Cheng, Adv. Electron. Mater. 3, 1600314 (2017).

    Article  CAS  Google Scholar 

  19. E. Öznergiz, Y.E. Kiyak, M.E. Kamasak, and I. Yildirim, J. Nanomater. 2014, 738490 (2014).

  20. E.H. Shin, K.S. Cho, M.H. Seo, and H. Kim, Determination of electrospun fiber diameter distributions using image analysis processingMacromol. Res. 16, 314 (2008).

    Article  CAS  Google Scholar 

  21. B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J.F. Löffler, T. Feurer, and Y. Ekinci, ACS Nano 5, 6374 (2011).

    Article  CAS  Google Scholar 

  22. L.A. Bauer, N.S. Birenbaum, and G.J. Meyer, J. Mater. Chem. 14, 517 (2004).

    Article  CAS  Google Scholar 

  23. D. Wang, S. Wang, J. Wang, C. Shen, J. Ding, W. Li, P. Huang, and C. Lu, Opt. Mater. Express. 7, 533 (2017).

    Article  CAS  Google Scholar 

  24. D. Xu, and D. Xue, J. Cryst. Growth. 286, 108 (2006).

    Article  CAS  Google Scholar 

  25. C. Yogeswari, K.M. Hijas, T.C.S. Girisun, and R. Nagalakshmi, Opt. Mater. 100, 109691 (2020).

    Article  CAS  Google Scholar 

  26. A. Kumar, R. Jose, K. Fujihara, J. Wang, and S. Ramakrishna, Chem. Mater. 19, 6536 (2007).

    Article  CAS  Google Scholar 

  27. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A.C. Bose, Solid State Commun. 149, 1919 (2009).

    Article  CAS  Google Scholar 

  28. H. Gonçalves, I. Saavedra, M. Lúcio, S. Bernstorff, E. Gomes, and M. Belsley, J. Nanoparticle Res. 20, 248 (2018).

    Article  CAS  Google Scholar 

  29. S. Tsunekawa, T. Fukuda, and A. Kasuya, J. Appl. Phys. 87, 1318 (2000).

    Article  CAS  Google Scholar 

  30. M. Uddin, J. Sannigrahi, M. Masud, D. Bhadra, and B. Chaudhuri, J. Appl. Polym. Sci. 125, 2363 (2012).

    Article  CAS  Google Scholar 

  31. L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceramics 45, 24625 (2019).

    Article  CAS  Google Scholar 

  32. I.-D. Hussein, A. Al-Saidi, and F. Sadik, Adv. Mater. Phys. Chem. 6, 120 (2016).

    Article  CAS  Google Scholar 

  33. M. Basappa, L. Yesappa, S.P. Ashokkumar, H. Vijeth, and H. Devendrappa, AIP Conf. Proc. 2244, 080018 (2020).

    Article  CAS  Google Scholar 

  34. G. Cao, and Y. Wang, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, 2nd ed., (Singapore: World Scientific Pub, 2004).

    Book  Google Scholar 

  35. E. Berardo, and M.A. Zwijnenburg, J. Phys. Chem. C. 119, 13384 (2015).

    Article  CAS  Google Scholar 

  36. Y. Ishii, and H. Murata, J. Mater. Chem. 22, 4695 (2012).

    Article  CAS  Google Scholar 

  37. C. Babeela, T.C. Sabari Girisun, and G. Vinitha, J. Phys. D Appl. Phys. 48, 065102 (2015).

    Article  CAS  Google Scholar 

  38. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  CAS  Google Scholar 

  39. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 10163 (2020).

    Google Scholar 

  40. P.G. Louie Frobel, S.R. Suresh, S. Mayadevi, S. Sreeja, C. Mukherjee, and C.I. Muneera, Mater. Chemi. Phys. 129, 981 (2011).

    Article  CAS  Google Scholar 

  41. N. Priyadarshani, T.C. Sabari Girisun, and S. Venugopal Rao, Mater. Chemi. Phys. 220, 342 (2018).

    Article  CAS  Google Scholar 

  42. P. Poornesh, G. Umesh, P.K. Hegde, M.G. Manjunatha, K.B. Manjunatha, A.V. Adhikari, and A. Adhikari, Appl. Phys B. 97, 117 (2009).

    Article  CAS  Google Scholar 

  43. Y. Chen, J. Doyle, Y. Liu, A. Strevens, Y. Lin, M. El-Khouly, Y. Araki, W. Blau, and O. Ito, J. Photochem. Photobiol A. 185, 263 (2007).

    Article  CAS  Google Scholar 

  44. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, J. Ding, W. Li, C. Shen, G. Liu, and P. Huang, Cryst. Eng. Comm. 18, 9292 (2016).

    Article  CAS  Google Scholar 

  45. M.R. Parida, C. Vijayan, C.S. Rout, C.S.S. Sandeep, R. Philip, and P.C. Deshmukh, J. Phys. Chem. C 115, 112 (2011).

    Article  CAS  Google Scholar 

  46. C.S. Suchand Sandeep, A.K. Samal, T. Pradeep, and R. Philip, Chem. Phys. Lett. 485, 326 (2010).

    Article  CAS  Google Scholar 

  47. S. Sivaramakrishnan, V.S. Muthukumar, S.S. Sai, K. Venkataramaniah, J. Reppert, A.M. Rao, M. Anija, R. Philip, and N. Kuthirummal, Appl. Phys. Lett. 91, 093104 (2007).

    Article  CAS  Google Scholar 

  48. J.J. Thomas, S. Krishnan, K. Sridharan, R. Philip, and N. Kalarikkal, Mater. Res. Bull. 47, 1855 (2012).

    Article  CAS  Google Scholar 

  49. C. Meng, S.-L. Yu, H.-Q. Wang, Y. Cao, L.-M. Tong, W.-T. Liu, and Y.-R. Shen, Light Sci. Appl. 4, e348 (2015).

    Article  CAS  Google Scholar 

  50. R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, Phys. Chem. Chem. Phys. 22, 27224 (2020).

    Article  CAS  Google Scholar 

  51. M.C. Divyasree, E. Shiju, J. Francis, P.T. Anusha, S.V. Rao, and K. Chandrasekharan, Mater. Chem. Phys. 197, 208 (2017).

    Article  CAS  Google Scholar 

  52. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Appl. Nano Mater. 3, 8618 (2020).

    Article  CAS  Google Scholar 

  53. S. Anandan, S. Manoharan, N.K.S. Narendran, T.C.S. Girisun, and A.M. Asiri, Opt. Mater. 85, 18 (2018).

    Article  CAS  Google Scholar 

  54. R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author R. Nagalakshmi gratefully acknowledges Science and Engineering Research Board (SERB), Statutory board, Department of Science & Technology, Govt. of India for supporting this work under research work (No: EMR/2016/005324). The author C. Yogeswari also thanks SERB for awarding SRF in the project and continued financial support. The authors highly acknowledge Mr. Nilesh Kulkarni for XRD measurements, Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nagalakshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogeswari, C., Sabari Girisun, T.C. & Nagalakshmi, R. Excited-State Absorption Assisted Optical Limiting Action of Potassium Dihydrogen Phosphate (KDP)–Polyethylene Oxide (PEO) Electrospun Nanofibers. Journal of Elec Materi 50, 4619–4632 (2021). https://doi.org/10.1007/s11664-021-08996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08996-4

Keywords

Navigation