Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analyzing high-dimensional cytometry data using FlowSOM

Abstract

The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1–3 h to complete, though quality issues can increase this time considerably.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FlowSOM analysis pipeline.
Fig. 2: Preprocessing summary.
Fig. 3: Fluorescence intensities per marker of interest for all files.
Fig. 4: FlowSOM troubleshooting.
Fig. 5: FlowSOM tree.
Fig. 6: Manual labels on the FlowSOM tree.
Fig. 7: Groups comparison.

Similar content being viewed by others

Data availability

The flow cytometry data files and additional files are publicly available on FlowRepository (https://flowrepository.org/id/FR-FCM-ZZQY) and (https://flowrepository.org/id/FR-FCM-Z2TQ).

Code availability

The FlowSOM code is publicly available on GitHub (https://github.com/saeyslab/FlowSOM) and on Bioconductor (https://bioconductor.org/packages/release/bioc/html/FlowSOM.html). A demo script including the protocol that was described here and the source code for the figures in this paper are available on GitHub (https://github.com/saeyslab/FlowSOM_protocol). A list of the used R libraries and the versions can be found in Supplementary Note 1.

References

  1. Adan, A., Alizada, G., Kiraz, Y., Baran, Y. & Nalbant, A. Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 37, 163–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Liechti, T. & Roederer, M. OMIP-051 – 28-color flow cytometry panel to characterize B cells and myeloid cells. Cytometry A 95, 150–155 (2019).

    Article  PubMed  Google Scholar 

  3. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Futamura, K. et al. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry A 87, 830–842 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saeys, Y., Van Gassen, S. & Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).

    Article  PubMed  Google Scholar 

  7. Emmaneel, A. et al. A computational pipeline for the diagnosis of CVID patients. Front. Immunol. 10, 2009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ellis, B. et al. flowCore: flowCore: basic structures for flow cytometry data. Bioconductor version: release (3.11). https://doi.org/10.18129/B9.bioc.flowCore (2020).

  10. Kohonen, T. The self-organizing map. Proc. IEEE 78, 1464–1480 (1990).

    Article  Google Scholar 

  11. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  12. Shekhar, K., Brodin, P., Davis, M. M. & Chakraborty, A. K. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl Acad. Sci. USA 111, 202–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Aghaeepour, N., Nikolic, R., Hoos, H. H. & Brinkman, R. R. Rapid cell population identification in flow cytometry data. Cytometry A 79A, 6–13 (2011).

    Article  Google Scholar 

  14. Lo, K., Hahne, F., Brinkman, R. R. & Gottardo, R. flowClust: a Bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics 10, 145 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ye, X. & Ho, J. W. K. Ultrafast clustering of single-cell flow cytometry data using FlowGrid. BMC Syst. Biol. 13, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weber, L. M. & Robinson, M. D. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89, 1084–1096 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X. et al. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol. 20, 297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pedersen, C. B. & Olsen, L. R. Algorithmic clustering of single-cell cytometry data—how unsupervised are these analyses really? Cytometry A 97, 219–221 (2020).

    Article  PubMed  Google Scholar 

  19. Liu, P. et al. Recent advances in computer-assisted algorithms for cell subtype identification of cytometry data. Front. Cell Dev. Biol. 8, 234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hamers, A. A. J. et al. Human monocyte heterogeneity as revealed by high-dimensional mass cytometry. Arterioscler. Thromb. Vasc. Biol. 39, 25–36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kratochvíl, M., Bednárek, D., Sieger, T., Fišer, K. & Vondrášek, J. ShinySOM: graphical SOM-based analysis of single-cell cytometry data. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa091 (2020).

  22. Weber, L. M., Nowicka, M., Soneson, C. & Robinson, M. D. diffcyt: differential discovery in high-dimensional cytometry via high-resolution clustering. Commun. Biol. 2, 183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van Gassen, S., Gaudilliere, B., Angst, M. S., Saeys, Y. & Aghaeepour, N. CytoNorm: a normalization algorithm for cytometry data. Cytometry A 97, 268–278 (2020).

    Article  PubMed  Google Scholar 

  24. Kotecha, N., Krutzik, P. O. & Irish, J. M. Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 53, 10.17.1–10.17.24 (2010).

    Google Scholar 

  25. FlowJoTM Software (Becton, Dickinson, 2019).

  26. Amir, E. D. et al. Development of a comprehensive antibody staining database using a standardized analytics pipeline. Front. Immunol. 10, 1315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lacombe, F., Lechevalier, N., Vial, J. P. & Béné, M. C. An R-derived FlowSOM process to analyze unsupervised clustering of normal and malignant human bone marrow classical flow cytometry data. Cytometry A 95, 1191–1197 (2019).

    Article  PubMed  Google Scholar 

  28. Bhattacharya, S. et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data 5, 180015 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vetters, J. et al. The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. J. Exp. Med. 216, 2010–2023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N. & Brinkman, R. R. FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 81A, 727–731 (2012).

    Article  Google Scholar 

  31. Roca, C. P. et al. AutoSpill: a method for calculating spillover coefficients in high-parameter flow cytometry. Preprint at bioRxiv https://doi.org/10.1101/2020.06.29.177196 (2020).

  32. Finak, G., Jiang, W. & Gottardo, R. CytoML for cross-platform cytometry data sharing. Cytometry A 93, 1189–1196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Finak, G. & Jiang, M. flowWorkspace: infrastructure for representing and interacting with gated and ungated cytometry data sets (2020).

  34. Emmaneel, A. PeacoQC: peak-based selection of high quality cytometry data. https://github.com/saeyslab/PeacoQC (2020).

  35. Finak, G. et al. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. Biol. 10, e1003806 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Malek, M. et al. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31, 606–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Nowicka, M. et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research 6, 748 (2019).

    Article  PubMed Central  Google Scholar 

  38. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  39. Pelon, F. et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11, 404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duetz, C., Bachas, C., Westers, T. M. & van de Loosdrecht, A. A. Computational analysis of flow cytometry data in hematological malignancies: future clinical practice? Curr. Opin. Oncol. 32, 162–169 (2020).

    Article  PubMed  Google Scholar 

  41. Ho, W. J. et al. Multipanel mass cytometry reveals anti–PD-1 therapy–mediated B and T cell compartment remodeling in tumor-draining lymph nodes. JCI Insight 5, e132286 (2020).

    Article  PubMed Central  Google Scholar 

  42. Metelli, A. et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci. Transl. Med. 12, eaay4860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaul, M. E. et al. Circulating neutrophil subsets in advanced lung cancer patients exhibit unique immune signature and relate to prognosis. FASEB J. 34, 4204–4218 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Laban, K. G. et al. cDC2 and plasmacytoid dendritic cells diminish from tissues of patients with non-Hodgkin orbital lymphoma and idiopathic orbital inflammation. Eur. J. Immunol. 50, 548–557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ho, W. J. et al. Viral status, immune microenvironment and immunological response to checkpoint inhibitors in hepatocellular carcinoma. J. Immunother. Cancer 8, e000394 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yarchoan, M. et al. Effects of B cell–activating factor on tumor immunity. JCI Insight 5, e136417 (2020).

    Article  PubMed Central  Google Scholar 

  47. Ghorani, E. et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat. Cancer 1, 546–561 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Perez, C. et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood 136, 199–209 (2020).

    Article  PubMed  Google Scholar 

  50. Kverneland, A. H. et al. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget 11, 2092–2105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Färkkilä, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khalsa, J. K. et al. Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types. Nat. Commun. 11, 3912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  PubMed  Google Scholar 

  55. Ranganath, T. et al. Characterization of the impact of daclizumab beta on circulating natural killer cells by mass cytometry. Front. Immunol. 11, 714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grayson, J. M. et al. Photodepletion with 2-Se-Cl prevents lethal graft-versus-host disease while preserving antitumor immunity. PLoS ONE 15, e0234778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leelatian, N. et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. eLife 9, e56879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gudbergsson, J. M. et al. Conventional treatment of glioblastoma reveals persistent CD44+ subpopulations. Mol. Neurobiol. 57, 3943–3955 (2020).

    Article  PubMed  CAS  Google Scholar 

  59. Wuggenig, P. et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun. Biol. 3, 130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Hawke, L. G., Mitchell, B. Z. & Ormiston, M. L. TGF-β and IL-15 synergize through MAPK pathways to drive the conversion of human NK cells to an innate lymphoid cell 1–like phenotype. J. Immunol. 204, 3171–3181 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Hagert, C. F., Bohn, A. B., Wittenborn, T. R. & Degn, S. E. Seeing the confetti colors in a new light utilizing flow cytometry and imaging flow cytometry. Cytometry A 97, 811–823 (2020).

    Article  PubMed  Google Scholar 

  63. Rein, I. D., Notø, H. Ø., Bostad, M., Huse, K. & Stokke, T. Cell cycle analysis and relevance for single-cell gating in mass cytometry. Cytometry A 97, 832–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Jokela, H. et al. Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice. Eur. J. Immunol. 50, 1500–1514 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Grandi, F. C. et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. Sci. Adv. 6, eaay5352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Neeland, M. R. et al. Mass cytometry reveals cellular fingerprint associated with IgE+ peanut tolerance and allergy in early life. Nat. Commun. 11, 1091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jang, J. S. et al. Single-cell mass cytometry on peripheral blood identifies immune cell subsets associated with primary biliary cholangitis. Sci. Rep. 10, 12584 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Eichmann, M. et al. Costimulation blockade disrupts CD4+ T cell memory pathways and uncouples their link to decline in β-cell function in type 1 diabetes. J. Immunol. 204, 3129–3138 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Muppidi, A. & Radfar, M. Löfgren’s syndrome sarcoidosis and Non-LS sarcoidosis prediction using 1d-Convolutional neural networks. Inform. Med. Unlocked 19, 100328 (2020).

    Article  Google Scholar 

  70. Mitsialis, V. et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease. Gastroenterology https://doi.org/10.1053/j.gastro.2020.04.074 (2020).

    Article  PubMed  Google Scholar 

  71. Brooks, A. E. S. et al. Ex vivo human adipose tissue derived mesenchymal stromal cells (ASC) are a heterogeneous population that demonstrate rapid culture-induced changes. Front. Pharmacol. 10, 1695 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Johnson, B. Z. et al. Pediatric burn survivors have long-term immune dysfunction with diminished vaccine response. Front. Immunol. 11, 1481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eccles, J. D. et al. T-bet+ memory B cells link to local cross-reactive IgG upon human rhinovirus infection. Cell Rep 30, 351–366.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Biasi, S. et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 11, 3434 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhao, N. Q. et al. Treated HIV infection alters phenotype but not HIV-specific function of peripheral blood natural killer cells. Front. Immunol. 11, 829 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, T. et al. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. eLife 9, e55487 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Goshu, B. A., Chen, H., Moussa, M., Cheng, J. & Catalfamo, M. Combination rhIL-15 and anti-PD-L1 (Avelumab) enhances HIVGag-specific CD8 T-cell function. J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa269 (2020).

  78. Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science https://doi.org/10.1126/science.abc8511 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mersmann, O., Beleites, C., Hurling, R., Friedman, A. & Ulrich, J. M. microbenchmark: Accurate Timing Functions. https://rdrr.io/cran/microbenchmark/

  80. Monaco, G. et al. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics 32, 2473–2480 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Fletez‐Brant, K., Špidlen, J., Brinkman, R. R., Roederer, M. & Chattopadhyay, P. K. flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 89, 461–471 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Finak, G. et al. High-throughput flow cytometry data normalization for clinical trials. Cytometry A 85A, 277–286 (2014).

    Article  Google Scholar 

  83. Hahne, F. et al. Per-channel basis normalization methods for flow cytometry data. Cytometry A 77A, 121–131 (2009).

    Google Scholar 

  84. Rybakowska, P., Alarcón-Riquelme, M. E. & Marañón, C. Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Comput. Struct. Biotechnol. J. 18, 874–886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stanley, N. et al. VoPo leverages cellular heterogeneity for predictive modeling of single-cell data. Nat. Commun. 11, 3738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.V.G. is an ISAC Marylou Ingram Scholar and supported by an FWO postdoctoral research grant (Research Foundation—Flanders). We thank the VIB Flow Core for training, support and access to the instrument park. This research received funding from the Flemish Government (AI Research program). A.E. is supported by the PID Grand Challenges Program of VIB. This VIB Program received support from the Flemish Government under the Management Agreement 2017–2021 (VR 2016 2312 Doc.1521/4).

Author information

Authors and Affiliations

Authors

Contributions

S.V.G and Y.S. conceptualized the FlowSOM algorithm. S.V.G., A.C., A.E. and K.Q. wrote the FlowSOM code. S.V.G., Y.S. and J.A. supervised the work. K.Q. wrote the manuscript. All authors edited, read and approved the manuscript.

Corresponding author

Correspondence to Sofie Van Gassen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Nima Aghaeepour, Étienne Becht and Enrico Lugli for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Van Gassen, S. et al. Cytometry A 87, 636–645 (2015): https://doi.org/10.1002/cyto.a.22625

Guilliams, M. et al. Immunity 45, 669–684 (2016): https://doi.org/10.1016/j.immuni.2016.08.015

Emmaneel, A. et al. Front. Immunol. 10, 2009 (2019): https://doi.org/10.3389/fimmu.2019.02009

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Note.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintelier, K., Couckuyt, A., Emmaneel, A. et al. Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc 16, 3775–3801 (2021). https://doi.org/10.1038/s41596-021-00550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00550-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics