Skip to main content
Log in

Effect of Methanol Concentration in the Mixed Solvent Dimethyl Sulfoxide + Methanol in the Extraction of Toluene from Heptane: Experimental Measurements and Thermodynamic Modeling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, liquid–liquid phase equilibrium data were measured for quaternary systems containing dimethyl sulfoxide + mass fraction of methanol as mixed solvent, toluene as aromatic hydrocarbon and heptane as fuel model at 298.15 K under ambient pressure. The selectivity and the distribution coefficient calculated from the experimental data were used to examine the possibility of adding methanol to dimethyl sulfoxide for extraction of toluene from heptane. Liquid samples were characterized by gas chromatography. The reliability of the experimental LLE data were examined by Othmer–Tobias and Hand methods. The non-random two-liquid model was used to correlate experimental data and fitting parameters were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Lin, T. Tsai, T. Lin, C. Yang, J. Chem. Eng. Data 53, 760–764 (2008). https://doi.org/10.1021/je700611f

    Article  Google Scholar 

  2. S.A. Ahmad, R.S. Tanwar, R.K. Gupta, A. Khanna, Fluid Phase Equilib. 220, 189–198 (2004). https://doi.org/10.1016/j.fluid.2004.02.00

    Article  Google Scholar 

  3. X. Sun, S. Xiang, Chin. J. Chem. Eng. 22, 1298–1301 (2014). https://doi.org/10.1016/j.cjche.2013.05.003

    Article  Google Scholar 

  4. M. Mohsen-Nia, H. Modarress, F. Doulabi, H. Bagheri, J. Chem. Thermodyn. 37, 1111–1118 (2005)

    Article  Google Scholar 

  5. T.A. Al-Sahhaf, E. Kapetanovic, Fluid Phase Equilib. 119, 153–163 (1996)

    Article  Google Scholar 

  6. T.M. Letcher, S. Zondi, P.K. Naicker, J. Chem. Eng. Data 48, 23–28 (2003). https://doi.org/10.1021/je010317u

    Article  Google Scholar 

  7. U.K.A. Kumar, R. Mohan, J. Chem. Eng. Data 56, 485–490 (2011). https://doi.org/10.1021/je100908f

    Article  Google Scholar 

  8. A.B.S.H. Salem, E.Z. Hamad, M.A. Al-naafa, Ind. Eng. Chem. Res. 33, 689–692 (1994)

    Article  Google Scholar 

  9. J.J. Li, Q.S. Zhao, X.D. Tang, K.L. Xiao, J.Y. Yuan, Chem. Eng. Data 59, 3307–3313 (2014). https://doi.org/10.1021/je500442m

    Article  Google Scholar 

  10. M. Mohsen-Nia, F.S.M. Doulabi, V.I. Manousiouthakis, J. Chem. Thermodyn. 40, 1269–1273 (2008). https://doi.org/10.1016/j.jct.2008.03.014

    Article  Google Scholar 

  11. S.M.R.S. Ghannad, M.N. Lotfollahi, A.H. Asl, J. Chem. Thermodyn. 43, 329–333 (2011)

    Article  Google Scholar 

  12. Y. Guo, F. Shi, Q. Shu, X. Yue, C. Wang, L. Tao, J. Li, Fluid Phase Equib. (2020). https://doi.org/10.1016/j.fluid.2020.112882

    Article  Google Scholar 

  13. M. Królikowski, M. Wieckowski, M. Zawadzki, J. Chem. Thermodyn. 149, 106149 (2020)

    Article  Google Scholar 

  14. M. Enayati, B. Mokhtarani, A. Sharifi, S. Anvari, M. Mirzaei, J. Chem. Eng. Data 62, 1068–1075 (2017)

    Article  Google Scholar 

  15. O.U. Ahmed, F.S. Mjalli, M.K. Hadj-Kali, T. Al-Wahaibi, Y. Al-Wahaibi, Fluid Phase Equilib. 421, 16–23 (2016). https://doi.org/10.1016/j.fluid.2016.03.01

    Article  Google Scholar 

  16. F. Cai, W. Zhu, Y. Wang, T. Wang, G. Xiao, J. Chem. Eng. Data 60, 1776–1780 (2015)

    Article  Google Scholar 

  17. P.F. Requejo, N. Calvar, Á. Domínguez, J. Chem. Thermodyn. 98, 56–61 (2016)

    Article  Google Scholar 

  18. F. Farghi, M. Kaddami, J. Solution Chem. 47, 1127–1137 (2018). https://doi.org/10.1007/s10953-018-0776-2

    Article  Google Scholar 

  19. M.B. Gramajo, A.M. Cases, J. Solution Chem. 44, 171–180 (2015). https://doi.org/10.1007/s10953-015-0301-9

    Article  Google Scholar 

  20. B.E.-G. Flores, J.Á. Hernández, F.-G. Sánchez, M.A.-A. Olivos, Fluid Phase Equilib. 348, 60–69 (2013)

    Article  Google Scholar 

  21. M.B. Gramajo, J.H. Veliz, M.C. Lucena, D.A. Gonzalez, J. Solution Chem. 42, 2025–2033 (2013). https://doi.org/10.1007/s10953-013-0091-x

    Article  Google Scholar 

  22. M. Mohsen-Nia, H. Modarress, F. Doulabi, J. Chem. Thermodyn. 38, 158–164 (2006)

    Article  Google Scholar 

  23. F. Farghi, M. Kaddami, Russ. J. Phys. Chem. A 92, 2502–2506 (2018). https://doi.org/10.1134/S0036024418120105

    Article  Google Scholar 

  24. F. Farghi, M. Kaddami, Int. J. Thermophys. 41, 17 (2020)

    Article  ADS  Google Scholar 

  25. A.M. Awwad, A.H. Al-Dujaili, A.-M.A. Al-Haideri, H.M. Essa, Fluid Phase Equilib. 270, 10–14 (2008). https://doi.org/10.1016/j.fluid.2008.05.011

    Article  Google Scholar 

  26. D.F. Othmer, P.E. Tobias, Ind. Eng. Chem. 34, 693–696 (1942)

    Article  Google Scholar 

  27. D.B. Hand, J. Phys. Chem. 34, 1961–2000 (1930)

    Article  Google Scholar 

  28. H. Renon, J.M. Prausnitz, AIChE J. 14, 135–144 (1968)

    Article  Google Scholar 

  29. A. Kaewchada, A. Jaree, Chem. Eng. Res. Des. 117, 784–791 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of the Analyses and Characterization Centre staff, Kadi AYYAD University, Marrakech-Morocco.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadoua Farghi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in relation to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farghi, F., Larouech, M. & Kaddami, M. Effect of Methanol Concentration in the Mixed Solvent Dimethyl Sulfoxide + Methanol in the Extraction of Toluene from Heptane: Experimental Measurements and Thermodynamic Modeling. Int J Thermophys 42, 130 (2021). https://doi.org/10.1007/s10765-021-02883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02883-0

Keywords

Navigation