Skip to main content
Log in

Influences of Cell Size, Cell Wall Thickness and Cell Circularity on the Compressive Responses of Closed-Cell Aluminum Foam and its FEA Analysis

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, the consequence of cell-size, cell-wall-thickness and cell circularity together on the compressive performance of closed-cell aluminum foam was analyzed experimentally and with FEM simultaneously. The closed-cell metal foams (CAFs) with varying cell sizes of 55% porosity were synthesized through stir casting technique. The granular metallic calcium is used as a stabilizing/thickening agent, and TiH2 powder used as a foaming agent. The uniaxial compression tests were performed to investigate the compressive deformation behavior of CAFs. The simulation studies were carried out by taking the assumption similar to experimental constraints. The circular-shaped cells were created in FE half symmetrical model of varying cell sizes (in 2-Dimensional). The cell sizes used in FE models are 1.5 mm, 2.5 mm, 2.8 mm and of 3.5 mm. While in experimental samples, different cell sizes obtained are 1.65 mm, 2.47 mm, 2.88 mm and 3.59 mm. In both of the investigations, it is observed that the energy absorption capacity and plateau strength decrease with an increase in cell sizes or vice versa. A similar effect was also observed with an increase in cell wall thickness. The obtained FE results are acceptable and comparable with the experimental for each cell size model. The deformation mechanism was analyzed using deformed sample images, which were captured during the deformation as well as during the different stages in the FEA models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Q. Yu, Y. Zhao, A. Dong, Y. Li, Mechanical properties of EPS filled syntactic foams prepared by VARTM. Compos. Part B Eng. 136, 126–134 (2018). https://doi.org/10.1016/j.compositesb.2017.07.053

    Article  CAS  Google Scholar 

  2. V.C. Srivastava, K.L. Sahoo, Processing, stabilization and applications of metallic foams. Art of science. Mater. Sci. Pol. 25, 733–753 (2007)

    CAS  Google Scholar 

  3. J. Banhart, Characterization and applications of cellular metals and metal foams. Manuf. Prog Mater. Sci. 46, 559–632 (2001)

    Article  CAS  Google Scholar 

  4. N. Fleck, Metal foams : a design guide metal foams : a design guide, 3069, 264 (2016). https://doi.org/10.1016/S0261-3069(01)00049-8

  5. O.B. Olurin, N.A. Fleck, M.F. Ashby, Deformation and fracture of aluminium foams. Mater. Sci. Eng. A 291, 136–146 (2000). https://doi.org/10.1016/S0921-5093(00)00954-0

    Article  Google Scholar 

  6. Y. Wang, X. Zhai, J. Yan, W. Ying, W. Wang, Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading. Thin-Walled Struct. 131, 566–576 (2018). https://doi.org/10.1016/j.tws.2018.07.056

    Article  Google Scholar 

  7. R. Rajendran, K.P. Sai, B. Chandrasekar, A. Gokhale, S. Basu, Preliminary investigation of aluminium foam as an energy absorber for nuclear transportation cask. Mater. Des. 29, 1732–1739 (2008). https://doi.org/10.1016/j.matdes.2008.03.028

    Article  CAS  Google Scholar 

  8. E.W. Andrews, G. Gioux, P.R. Onck, L.J. Gibson, F. García-Moreno, D. Schwingel, H.W. Seeliger, C. Vecchionacci, D. Alwes, J. Dittrich, C. Chen, T.J. Lu, M.D. Goel, P. Altenhofer, V.A. Matsagar, A.K. Gupta, C. Mundt, S. Marburg, R.P. Merrett, G.S. Langdon, M.D. Theobald, P.R. Onck, E.W. Andrews, L.J. Gibson, F.G. Rammerstorfer, D.H. Pahr, T. Daxner, W.K. Vonach, Aluminium foam sandwich structures for space applications. Int. J. Mech. Sci. 43, 326–330 (2001). https://doi.org/10.1016/j.matdes.2012.08.016

    Article  CAS  Google Scholar 

  9. A.G. Evans, J.W. Hutchinson, M.F. Ashby, Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171–221 (1998). https://doi.org/10.1016/S0079-6425(98)00004-8

    Article  CAS  Google Scholar 

  10. M.D. Goel, Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes. Thin-Walled Struct. 90, 1–11 (2015). https://doi.org/10.1016/j.tws.2015.01.004

    Article  Google Scholar 

  11. Y. Cheng, Y. Li, X. Chen, X. Zhou, N. Wang, Compressive properties and energy absorption of aluminum foams with a wide range of relative densities. J. Mater. Eng. Perform. (2018). https://doi.org/10.1007/s11665-018-3514-4

    Article  Google Scholar 

  12. D.A. Whisler, H. Kim, A. Rabiei, Author ’ s Accepted manuscript high strain rate behavior of composite metal foam. Mater. Sci. Eng. A. (2015). https://doi.org/10.1016/j.msea.2015.02.027

    Article  Google Scholar 

  13. M.D. Goel, V.A. Matsagar, S. Marburg, A.K. Gupta, Comparative performance of stiffened sandwich foam panels under impulsive loading. J. Perform. Constr. Facil. 27, 540–549 (2013). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000340

    Article  Google Scholar 

  14. H. Zhou, Y. Wang, X. Wang, Z. Zhao, G. Ma, Energy absorption of graded foam subjected to blast: a theoretical approach. Mater. Des. 84, 351–358 (2015). https://doi.org/10.1016/j.matdes.2015.06.124

    Article  Google Scholar 

  15. J.K. Katiyar, S. Bhattacharya, V.K. Patel, V. Kumar, in Automotive Tribology, Energy, Environment, and Sustainability. http://www.springer.com/series/15901

  16. J. Baumeister, J. Banhart, M. Weber, Aluminium foams for transport industry. Mater. Des. 18, 217–220 (2002). https://doi.org/10.1016/s0261-3069(97)00050-2

    Article  Google Scholar 

  17. R. Rajendran, K. Prem Sai, B. Chandrasekar, A. Gokhale, S. Basu, Impact energy absorption of aluminium foam fitted stainless steel tube. Mater. Des. 30(5), 1777–1784 (2009). https://doi.org/10.1016/j.matdes.2008.07.021

    Article  CAS  Google Scholar 

  18. M. Colombo, P. Martinelli, R. Zedda, A. Albertelli, N. Marino, Dynamic response and energy absorption of mineral-phenolic foam subjected to shock loading. Mater. Des. 78, 63–73 (2015). https://doi.org/10.1016/j.matdes.2015.04.014

    Article  CAS  Google Scholar 

  19. M.D. Goel, V.A. Matsagar, Blast-resistant design of structures. Pract. Period. Struct. Des. Constr. 19, 1–9 (2014). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000188

    Article  Google Scholar 

  20. G. Srinath, A. Vadiraj, G. Balachandran, S.N. Sahu, A.A. Gokhale, Characteristics of aluminium metal foam for automotive applications. Trans. Indian Inst. Met. 63, 765–772 (2010). https://doi.org/10.1007/s12666-010-0117-7

    Article  CAS  Google Scholar 

  21. M.F. Ashby, A. Evans, N. a Fleck, L.J. Gibson, J.W. Hutchinson, N.G. Hayden, Book reviews. Anticancer Res 32(1), 3594 (2012). https://doi.org/10.1016/S0261-3069(01)00049-8

    Article  Google Scholar 

  22. C. Barbier, P.M. Michaud, D. Baillis, J. Randrianalisoa, A. Combescure, New laws for the tension/compression properties of Voronoi closed-cell polymer foams in relation to their microstructure. Eur. J. Mech. A/Solids 45, 110–122 (2014). https://doi.org/10.1016/j.euromechsol.2013.12.001

    Article  Google Scholar 

  23. H. Gao, C. Xiong, J. Yin, H. Deng, Research on Dynamic Accumulation effect and constitutive model of aluminum foams under dynamic impact. Int. J. Met. 13, 146–157 (2019). https://doi.org/10.1007/s40962-018-0245-0

    Article  CAS  Google Scholar 

  24. X.Q. Cao, Z.H. Wang, H.W. Ma, L.M. Zhao, G.T. Yang, Effects of cell size on compressive properties of aluminum foam. Trans. Nonferrous Met. Soc. China (English Ed) 16, 351–356 (2006). https://doi.org/10.1016/S1003-6326(06)60060-5

    Article  CAS  Google Scholar 

  25. E.W. Andrews, G. Gioux, P. Onck, L.J. Gibson, Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001). https://doi.org/10.1016/S0020-7403(00)00043-6

    Article  Google Scholar 

  26. R. Gradinger, F.G. Rammerstorfer, On the influence of meso-inhomogeneities on the crush worthiness of metal foams. Acta Mater. 47, 143–148 (1998). https://doi.org/10.1016/S1359-6454(98)00332-2

    Article  Google Scholar 

  27. Z. Chen, X. Wang, F. Giuliani, A. Atkinson, Microstructural characteristics and elastic modulus of porous solids. Acta Mater. 89, 268–277 (2015). https://doi.org/10.1016/j.actamat.2015.02.014

    Article  CAS  Google Scholar 

  28. P. Kenesei, C. Kádár, Z. Rajkovits, J. Lendvai, The influence of cell-size distribution on the plastic deformation in metal foams. Scr. Mater. 50, 295–300 (2004). https://doi.org/10.1016/j.scriptamat.2003.09.046

    Article  CAS  Google Scholar 

  29. T.G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng. A. 283, 105–110 (2000). https://doi.org/10.1016/S0921-5093(00)00623-7

    Article  Google Scholar 

  30. J.F. Rakow, A.M. Waas, Size effects in metal foam cores for sandwich structures. 44th AIAA/ASME/ASCE/AHS/ASC Struct Struct. Dyn. Mater. Conf. 42(7), 1331–7 (2003)

    Google Scholar 

  31. U. Ramamurty, A. Paul, Variability in mechanical properties of a metal foam. Acta Mater. 52, 869–876 (2004). https://doi.org/10.1016/j.actamat.2003.10.021

    Article  CAS  Google Scholar 

  32. M. De Giorgi, A. Carofalo, V. Dattoma, R. Nobile, F. Palano, Aluminium foams structural modelling. Comput. Struct. 88, 25–35 (2010). https://doi.org/10.1016/j.compstruc.2009.06.005

    Article  Google Scholar 

  33. A.H. Roohi, H. Moslemi Naeini, M. Hoseinpour Gollo, M. Soltanpour, M. Abbaszadeh, On the random based closed cell metal foam modeling and its behavior in laser forming process. Opt. Laser. Technol. 72, 53–64 (2015). https://doi.org/10.1016/j.optlastec.2015.03.012

    Article  CAS  Google Scholar 

  34. A.E. Simone, L.J. Gibson, The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Mater. 46, 3929–3935 (1998). https://doi.org/10.1016/S1359-6454(98)00072-X

    Article  CAS  Google Scholar 

  35. F. Binesh, J. Zamani, M. Ghiasvand, Ordered structure composite metal foams produced by casting. Int. J. Met. 12, 89–96 (2018). https://doi.org/10.1007/s40962-017-0143-x

    Article  Google Scholar 

  36. B. Jiang, Z. Wang, N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 56, 169–172 (2007). https://doi.org/10.1016/j.scriptamat.2006.08.070

    Article  CAS  Google Scholar 

  37. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Compressibility of porous magnesium foam : dependency on porosity and pore size. Materials Letters. 58, 357–360 (2004). https://doi.org/10.1016/S0167-577X(03)00500-7

    Article  CAS  Google Scholar 

  38. S.K. Nammi, G. Edwards, H. Shirvani, Effect of cell-size on the energy absorption features of closed-cell aluminium foams. Acta Astronaut 128, 243–250 (2016). https://doi.org/10.1016/j.actaastro.2016.06.047

    Article  CAS  Google Scholar 

  39. Y. An, S. Yang, E. Zhao, Z. Wang, H. Wu, Fabrication of aluminum foam reinforced by graphene nanoflakes. Mater. Lett. 212, 4–7 (2018). https://doi.org/10.1016/j.matlet.2017.10.043

    Article  CAS  Google Scholar 

  40. M.H. Ghaleh, N. Ehsani, H.R. Baharvandi, High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles. Int. J. Met. (2020). https://doi.org/10.1007/s40962-020-00528-w

    Article  Google Scholar 

  41. J. Kahani Khabushan, S. Bazzaz Bonabi, F. Moghaddasi Aghbagh, A. Kahani Khabushan, A study of fabricating and compressive properties of cellular foam using. Mater. Des. 55, 792–797 (2014). https://doi.org/10.1016/j.matdes.2013.10.022

    Article  CAS  Google Scholar 

  42. C.C. Yang, H. Nakae, The effects of viscosity and cooling conditions on the foamability of aluminum alloy. J. Mater. Process. Technol. 141, 202–206 (2003). https://doi.org/10.1016/S0924-0136(02)01048-8

    Article  CAS  Google Scholar 

  43. Z.L. Song, J.S. Zhu, L.Q. Ma, D.P. He, Evolution of foamed aluminum structure in foaming process. Mater. Sci. Eng. A. 298, 137–143 (2001). https://doi.org/10.1016/s0921-5093(00)01285-5

    Article  Google Scholar 

  44. S. Sasikumar, K. Georgy, M. Mukherjee, G.S. Vinod Kumar, Foam stabilization by aluminum powder. Mater. Lett. 262, 127142 (2020). https://doi.org/10.1016/j.matlet.2019.127142

    Article  CAS  Google Scholar 

  45. F. von Zeppelin, M. Hirscher, H. Stanzick, J. Banhart, Desorption of hydrogen from blowing agents used for foaming metals. Compos. Sci. Technol. 63, 2293–2300 (2003). https://doi.org/10.1016/S0266-3538(03)00262-8

    Article  CAS  Google Scholar 

  46. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, N. Wanderka, Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater. 54, 1887–1900 (2006). https://doi.org/10.1016/j.actamat.2005.12.012

    Article  CAS  Google Scholar 

  47. D.L. Logan, A First Course in the Finite Element Method. (2012). ISBN:9780495668251

  48. K.S. Verma, S.K. Panthi, D.P. Mondal, Compressive deformation behavior of closed cell LM-13 aluminum alloy foam using finite element analysis. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.01.081

    Article  Google Scholar 

  49. I. Standard, Compression test for porous and cellular metals, Int. Stand. ISO 13314 (2011). ISO13314:2011

  50. Y. Cheng, Y. Li, X. Chen, X. Zhou, N. Wang, Compressive properties and Energy absorption of aluminum foams with a wide range of relative densities. J. Mater. Eng. Perform. 27, 4016–4024 (2018). https://doi.org/10.1007/s11665-018-3514-4

    Article  CAS  Google Scholar 

  51. B.N. Yadav, D. Muchhala, P. Singh, A.N.C. Venkat, D.P. Mondal, Synergic effect of MWCNTs and SiC addition on microstructure and mechanical properties of closed-cell Al–SiC-MWCNTs HCFs. Compos. Part B 172, 458–471 (2019). https://doi.org/10.1016/j.compositesb.2019.05.041

    Article  CAS  Google Scholar 

  52. A. Pandey, S. Birla, D.P. Mondal, S. Das, V.A.N. Ch, Compressive deformation behavior and strain rate sensitivity of Al-cenosphere hybrid foam with mono-modal, bi-modal and tri-modal cenosphere size distribution. Mater. Charact. 144, 563–574 (2018). https://doi.org/10.1016/j.matchar.2018.08.011

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors of work are very thankful to AcSIR AMPRI and Director CSIR AMPRI Bhopal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karan Singh Verma.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, K.S., Muchhala, D., Panthi, S.K. et al. Influences of Cell Size, Cell Wall Thickness and Cell Circularity on the Compressive Responses of Closed-Cell Aluminum Foam and its FEA Analysis. Inter Metalcast 16, 798–813 (2022). https://doi.org/10.1007/s40962-021-00627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00627-2

Keywords

Navigation