Skip to main content
Log in

Limit theorems for linear random fields with tapered innovations. II: The stable case

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In the paper, we consider the limit behavior of partial-sum random field (r.f.) \( \left.{S}_n\left({t}_1,{t}_2;\right)X\left(b\left(\mathbf{n}\right)\right)\right)={\sum}_{k=1}^{\left[{n}_1{t}_1\right]}{\sum}_{l=1}^{\left[{n}_2{t}_2\right]}{X}_{k,l}\left(b\left(\mathbf{n}\right)\right), \) where \( \left\{{X}_{k,l}\left(b\left(\mathbf{n}\right)\right)={\sum}_{i=0}^{\infty }{\sum}_{j=0}^{\infty }{c}_{i,j}{\upxi}_{k-i,l-j}\left(b\left(\mathbf{n}\right)\right),k,l\in \mathrm{\mathbb{Z}}\right\},n\ge 1, \) is a family (indexed by n = (n1, n2), ni ≥ 1) of linear r.f.s with filter ci,j = aibj and innovations ξk,l(b(n)) having heavy-tailed tapered distributions with tapering parameter b(n) growing to infinity as n → ∞. In [V. Paulauskas, Limit theorems for linear random fields with tapered innovations. I: The Gaussian case, Lith. Math. J., 61(2):261–273, 2021], we considered the so-called hard tapering as b(n) grows relatively slowly and the limit r.f.s for appropriately normalized Sn(t1, t2;X(b(n))) are Gaussian. In this paper, we consider the case of soft tapering where b(n) grows more rapidly in comparison with the case of hard tapering and stable limit r.f.s.We consider cases where the sequences {ai} and {bj} are long-range, short-range, and negatively dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Astrauskas, Limit theorems for sums of linearly generated random variables, Lith. Math. J., 23:127–134, 1984.

    Article  MathSciNet  Google Scholar 

  2. N.H. Bingham, C.M. Goldie, and C.M. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.

    Book  Google Scholar 

  3. A. Chakrabarty and G. Samorodnitsky, Understanding heavy tails in a bounded world or, is a truncated heavy tail heavy or not?, Stoch. Models, 28(1):109–143, 2012.

    Article  MathSciNet  Google Scholar 

  4. J. Damarackas, A note on the normalizing sequences for sums of linear processes in the case of negative memory, Lith. Math. J., 57(4):421–432, 2017.

    Article  MathSciNet  Google Scholar 

  5. J. Damarackas and V. Paulauskas, Some remarks on scaling transition in limit theorems for random fields, preprint, 2020, arXiv:1903.09399v2.

  6. J. Damarackas and V. Paulauskas, On Lamperti type limit theorem and scaling transition for random fields, J. Math. Anal. Appl., 497(1):124852, 2021.

  7. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  8. V. Paulauskas, A note on linear processes with tapered innovations, Lith. Math. J., 60(1):64–79, 2020.

    Article  MathSciNet  Google Scholar 

  9. V. Paulauskas, Erratum to “A note on linear processes with tapered innovations”, Lith. Math. J., 60(2):289, 2020.

  10. V. Paulauskas, Limit theorems for linear random fields with tapered innovations. I: The Gaussian case, Lith. Math. J., 61(2):261–273, 2021.

  11. V.V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  12. V. Pilipauskaitė and D. Surgailis, Scaling transition for nonlinear random fields with long-range dependence, Stochastic Processes Appl., 127(8):2751–2779, 2017.

  13. D. Puplinskaitė and D. Surgailis, Scaling transition for long-range dependent Gaussian random fields, Stochastic Processes Appl., 125(6):2256–2271, 2015.

  14. D. Puplinskaitė and D. Surgailis, Aggregation of autoregressive random fields and anisotropic long-range dependence, Bernoulli, 22(4):2401–2441, 2016.

  15. F. Sabzikar and D. Surgailis, Invariance principles for tempered fractionally integrated processes, Stochastic Processes Appl., 128(10):3419–3438, 2018.

    Article  MathSciNet  Google Scholar 

  16. G. Samorodnitsky and M. Taqqu, Stable non-Gaussian Random Processes. Models with Infinite Variance, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vygantas Paulauskas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulauskas, V., Damarackas, J. Limit theorems for linear random fields with tapered innovations. II: The stable case. Lith Math J 61, 502–517 (2021). https://doi.org/10.1007/s10986-021-09526-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-021-09526-9

MSC

Keywords

Navigation