Skip to main content

Advertisement

Log in

Probabilistic object tracking by low power microcontrollers

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Low power microcontrollers have become widely available. Hence, they have been used in several stand-alone applications in which the developed system depends on battery or energy harvesting module. One such application is surveillance aiming to observe a selected region or target in time. Due to the complexity of the problem and real-time constraints in operation, several object trackers have been proposed in literature. An object tracker produces the trajectory of an object from a given image sequence. To do so, two major steps are taken as object representation and trajectory prediction. Here, the computation load for tracking and object representation strength plays adversary effects most of the time. Moreover, the overall system to be deployed in a remote location casts serious limitations on the tracking method to be used. Therefore, we propose a probabilistic object representation-based object tracking method to work on low power Arm Cortex-M4 and -M7 core microcontrollers in this study. The proposed method aims to represent the object to be tracked as simple as possible. On the other hand, the method provides an effective way of describing the object to be tracked. Therefore, the novelty of the proposed method is adding a simple yet flexible probabilistic object representation method to the tracking framework. The probabilistic object representation method can be easily merged with the Bayesian framework which is extensively used in trajectory prediction. To do so, we use the particle filter based Bayesian tracking method. As we form the overall system for object tracking, we compare it with similar methods in the literature under real-time constraints. We provide experimental results to show the strengths and weaknesses of the proposed method in comparison with the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. Blanco-Filgueira, B., García-Lesta, D., Fernández-Sanjurjo, M., Brea, V.M., López, P.: Deep learning-based multiple object visual tracking on embedded system for iot and mobile edge computing applications. IEEE Internet Things J. 6(3), 5423–5431 (2019)

    Article  Google Scholar 

  3. Blanco-Filgueira, B., García-Lesta, D., Fernández-Sanjurjo, M., Brea, V.M., López, P.: Live demonstration: deep learning-based visual tracking of multiple objects on a low-power embedded system. In: IEEE International Symposium on Circuits and Systems (2019)

  4. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958). https://doi.org/10.1214/aoms/1177706645

    Article  MATH  Google Scholar 

  5. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

  6. Buyukesmeli, H.: Object tracking dataset. https://www.dropbox.com/s/k3e6h6xle2pvyen/extended.rar?dl=0. Accessed 22 Mar 2021

  7. Chen, P., Dang, Y., Liang, R., Zhu, W., He, X.: Real-time object tracking on a drone with multi-inertial sensing data. IEEE Trans. Intell. Transp. Syst. 19(1), 131–139 (2018)

    Article  Google Scholar 

  8. Ciaparrone, G., Luque Sánchez, F., Tabik, S., Troiano, L., Tagliaferri, R., Herrera, F.: Deep learning in video multi-object tracking: a survey. Neurocomputing 381, 61–88 (2020)

    Article  Google Scholar 

  9. Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2005) (2005)

  10. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. Proc. CVPR 2, 142–149 (2000)

    Google Scholar 

  11. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–577 (2003)

    Article  Google Scholar 

  12. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: International Conference on Computer Vision (ICCV), pp. 1135–1143 (2017)

  13. Harris, C., Stephens, M.: A combined corner and edge detector. In: In Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)

  14. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 583–596 (2015)

    Article  Google Scholar 

  15. Li, A., Lin, M., Wu, Y., Yang, M., Yan, S.: NUS-PRO: a new visual tracking challenge. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 335–349 (2016)

    Article  Google Scholar 

  16. Li, P., Wang, D., Wang, L., Lu, H.: Deep visual tracking: review and experimental comparison. Pattern Recognit. 76, 323–338 (2018)

    Article  Google Scholar 

  17. Liu, S., Liu, D., Srivastava, G., Połap, D., Wozniak, M.: Overview and methods of correlation filter algorithms in object tracking. Complex Intell. Syst. (2020). https://doi.org/10.1007/s40747-020-00161-4

    Article  Google Scholar 

  18. Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000). (10.18637/jss.v005.i08)

    Article  Google Scholar 

  19. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Proc. of the European Conference on Computer Vision (ECCV) (2016)

  20. Özcan, A.H., Ünsalan, C.: Probabilistic object detection and shape extraction in remote sensing data. Comput. Vis. Image Underst. 195, 102953 (2020)

    Article  Google Scholar 

  21. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  22. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: ECCV (8), Lecture Notes in Computer Science, vol. 9912, pp. 549–565. Springer (2016)

  23. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European Conference on Computer Vision (ECCV), pp. 430–443 (2006)

  24. Rothe, R., Guillaumin, M., Van Gool, L.: Non-maximum suppression for object detection by passing messages between windows. In: 12th Asian Conference on Computer Vision, pp. 290–306 (2014)

  25. Schraudolph, N.: A fast, compact approximation of the exponential function. Neural Comput. 11, 853–62 (1999). https://doi.org/10.1162/089976699300016467

    Article  Google Scholar 

  26. Shu, T., Xie, D., Rothrock, B., Todorovic, S., Zhu, S.C.: Joint inference of groups, events and human roles in aerial videos. In: CVPR (2015)

  27. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1442–1468 (2014)

    Article  Google Scholar 

  28. STMicroelectronics.: An4891 application note: stm32h72x, stm32h73x, and single-core stm32h74x/75x system architecture and performance (2020)

  29. VisDrone.: Visdrone-sot2020: the vision meets drone single object tracking challenge results. http://aiskyeye.com/. Accessed 22 Mar 2021

  30. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

  31. Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., Ling, H.: Vision meets drones: past, present and future (2020). arXiv:2001.06303

Download references

Acknowledgements

This work is supported by Marmara University under project no FEN-A-170419-0119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Ünsalan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büyükeşmeli, H., Masazade, E. & Ünsalan, C. Probabilistic object tracking by low power microcontrollers. J Real-Time Image Proc 18, 2539–2550 (2021). https://doi.org/10.1007/s11554-021-01139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01139-2

Keywords

Navigation