Skip to main content
Log in

Forward–Backward–Half Forward Dynamical Systems for Monotone Inclusion Problems with Application to v-GNE

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, the first-order forward–backward–half forward dynamical systems associated with the inclusion problem consisting of three monotone operators are analyzed. The framework modifies the forward–backward–forward dynamical system by adding a cocoercive operator to the inclusion. The existence, uniqueness, and weak asymptotic convergence of the generated trajectories are discussed. A variable metric forward–backward–half forward dynamical system with the essence of non-self-adjoint linear operators is introduced. The proposed notion, in turn, extends the forward–backward–forward dynamical system and forward–backward dynamical system in the framework of variable metric by relaxing some conditions on the metrics. The distributed dynamical system is further explored to compute a generalized Nash equilibrium in a monotone game as an application. A numerical example is provided to illustrate the convergence of trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbas, B., Attouch, H.: Dynamical systems and forward–backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator. Optimization 64(10), 2223–2252 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward–backward methods for structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161(2), 331–360 (2014)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Svaiter, B.F.: A continuous dynamical newton-like approach to solving monotone inclusions. SIAM J. Control Optim. 49(2), 574–598 (2011)

    Article  MathSciNet  Google Scholar 

  4. Banert, S., Bot, R.I.: A forward–backward–forward differential equation and its asymptotic properties. J. Convex Anal. 25(2), 371–388 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces. Math. Oper. Res. 26(2), 248–264 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer (2011)

  7. Belgioioso, G., Grammatico, S.: Projected-gradient algorithms for generalized equilibrium seeking in aggregative games are preconditioned forward–backward methods. In: 2018 European Control Conference (ECC), pp. 2188–2193. IEEE (2018)

  8. Bianchi, M., Grammatico, S.: Continuous-time fully distributed generalized Nash equilibrium seeking for multi-integrator agents. arXiv preprint arXiv:1911.12266 (2019)

  9. Bianchi, M., Grammatico, S.: A continuous-time distributed generalized Nash equilibrium seeking algorithm over networks for double-integrator agents. In: 2020 European Control Conference (ECC), pp. 1474–1479. IEEE (2020)

  10. Bot, R.I., Csetnek, E.R.: Second order forward–backward dynamical systems for monotone inclusion problems. SIAM J. Control Optim. 54(3), 1423–1443 (2016)

    Article  MathSciNet  Google Scholar 

  11. Boţ, R.I., Csetnek, E.R.: A dynamical system associated with the fixed points set of a nonexpansive operator. J. Dyn. Differ. Equ. 29(1), 155–168 (2017)

    Article  MathSciNet  Google Scholar 

  12. Boţ, R.I., Csetnek, E.R.: Convergence rates for forward–backward dynamical systems associated with strongly monotone inclusions. J. Math. Anal. Appl. 457(2), 1135–1152 (2018)

    Article  MathSciNet  Google Scholar 

  13. Boţ, R.I., Csetnek, E.R., László, S.C.: A primal-dual dynamical approach to structured convex minimization problems. J. Differ. Equ. 269(12), 10717–10757 (2020)

    Article  MathSciNet  Google Scholar 

  14. Briceno-Arias, L.M., Combettes, P.L.: Monotone operator methods for Nash equilibria in non-potential games. In: Computational and Analytical Mathematics, pp. 143–159. Springer (2013)

  15. Briceno-Arias, L.M., Davis, D.: Forward–backward–half forward algorithm for solving monotone inclusions. SIAM J. Optim. 28(4), 2839–2871 (2018)

    Article  MathSciNet  Google Scholar 

  16. Combettes, P.L.: Quasi-fejérian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Studies in Computational Mathematics, vol. 8, pp. 115–152. Elsevier (2001)

  17. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer (2011)

  18. Combettes, P.L., Vũ, B.C.: Variable metric forward–backward splitting with applications to monotone inclusions in duality. Optimization 63(9), 1289–1318 (2014)

    Article  MathSciNet  Google Scholar 

  19. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  20. Csetnek, E.R.: Continuous dynamics related to monotone inclusions and non-smooth optimization problems. Set-Valued Var. Anal. 28(4), 611–642 (2020)

    Article  MathSciNet  Google Scholar 

  21. Csetnek, E.R., Malitsky, Y., Tam, M.K.: Shadow Douglas–Rachford splitting for monotone inclusions. Appl. Math. Optim. 80(3), 665–678 (2019)

    Article  MathSciNet  Google Scholar 

  22. Davis, D.: Convergence rate analysis of primal-dual splitting schemes. SIAM J. Optim. 25(3), 1912–1943 (2015)

    Article  MathSciNet  Google Scholar 

  23. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175(1), 177–211 (2010)

    Article  MathSciNet  Google Scholar 

  24. Facchinei, F., Pang, J.S.: Nash equilibria: he variational approach. Convex optimization in signalprocessing and communications, p.443 (2010)

  25. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems. Springer (2007)

  26. Franci, B., Staudigl, M., Grammatico, S.: Distributed forward–backward (half) forward algorithms for generalized Nash equilibrium seeking. In: 2020 European Control Conference (ECC), pp. 1274–1279. IEEE (2020)

  27. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, vol. 9. SIAM (1989)

  28. Grammatico, S.: Dynamic control of agents playing aggregative games with coupling constraints. IEEE Trans. Autom. Control 62(9), 4537–4548 (2017)

    Article  MathSciNet  Google Scholar 

  29. Haraux, A.: Systemes Dynamiques Dissipatifs et Applications, vol. 17. Masson (1991)

  30. Limaye, B.V.: Functional Analysis, 2nd edn. New Age International LTD, Delhi (2006)

    Google Scholar 

  31. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  32. Raguet, H., Landrieu, L.: Preconditioning of a generalized forward–backward splitting and application to optimization on graphs. SIAM J. Imaging Sci. 8(4), 2706–2739 (2015)

    Article  MathSciNet  Google Scholar 

  33. Romano, A.R., Pavel, L.: Dynamic Nash equilibrium seeking for higher-order integrators in networks. In: 2019 18th European Control Conference (ECC), pp. 1029–1035. IEEE (2019)

  34. Saad, W., Han, Z., Poor, H.V., Basar, T.: Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Process. Mag. 29(5), 86–105 (2012)

    Article  Google Scholar 

  35. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, vol. 6. Springer (2013)

  36. Stankovic, M.S., Johansson, K.H., Stipanovic, D.M.: Distributed seeking of Nash equilibria with applications to mobile sensor networks. IEEE Trans. Autom. Control 57(4), 904–919 (2011)

    Article  MathSciNet  Google Scholar 

  37. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  38. Yi, P., Pavel, L.: An operator splitting approach for distributed generalized Nash equilibria computation. Automatica 102, 111–121 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support from Ministry of Human Resource and Development (MHRD), New Delhi, India, under Junior Research Fellow (JRF) scheme. Also the third author acknowledges the financial support from Indian Institute of Technology (BHU), Varanasi, India, in terms of teaching assistantship. The authors are grateful to an anonymous reviewer for pointing out the flaws in the initial version of the paper.

Funding

Funding was provided by University Grants Commission (IN) (Grant No. 411751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Dixit.

Additional information

Communicated by Radu Ioan Bot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P., Sahu, D.R., Dixit, A. et al. Forward–Backward–Half Forward Dynamical Systems for Monotone Inclusion Problems with Application to v-GNE. J Optim Theory Appl 190, 491–523 (2021). https://doi.org/10.1007/s10957-021-01891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01891-2

Keywords

Navigation