Skip to main content
Log in

Contraction centers in families of hyperkähler manifolds

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the exceptional loci of birational (bimeromorphic) contractions of a hyperkähler manifold M. Such a contraction locus is the union of all minimal rational curves in a collection of cohomology classes which are orthogonal to a wall of the Kähler cone. Cohomology classes which can possibly be orthogonal to a wall of the Kähler cone of some deformation of M are called MBM classes. We prove that all MBM classes of type (1,1) can be represented by rational curves, called MBM curves. Any MBM curve can be contracted on an appropriate birational model of M, unless \(b_2(M) \leqslant 5\). When \(b_2(M)>5\), this property can be used as an alternative definition of an MBM class and an MBM curve. Using the results of Bakker and Lehn, we prove that the stratified diffeomorphism type of a contraction locus remains stable under all deformations for which these classes remains of type (1,1), unless the contracted variety has \(b_2\leqslant 4\). Moreover, these diffeomorphisms preserve the MBM curves, and induce biholomorphic maps on the contraction fibers, if they are normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By the Calabi–Yau theorem, this is the same as a hyperkähler manifold.

  2. The latter has only finitely many connected components, see [22]

  3. See e.g. [19, Proposition 13], for local finiteness issues.

  4. We shall use the term “birational contraction” in the non-algebraic setting too, meaning “bimeromorphic contraction”.

  5. [40, Theorem 1.6]; see also [38, 39].

  6. A “wall” shall always mean a face of maximal dimension, that is \(h^{1,1}-1\).

  7. In the non-projective case without assumptions on \(b_2\),this statement can be shown using the density of complex structures corresponding to projective manifolds, but we shall not need it.

  8. By a slight abuse of terminology, we say that “F can be contracted”.

  9. G. Mongardi has introduced the notion of wall divisors in [34], the two notions turned out to be equivalent.

  10. Note added in proof: it is in the last version, with a reference to the present paper: Corollary 5.9.

  11. The mixed formal-analytic setting is natural for the deformation theory of complex analytic varieties, such as in [23] or in [8]. The objects of the relevant category are complex varieties formally completed in some directions. To be more rigorous, an object \({{\mathcal {X}}}\) of this catefory is a pro-scheme obtained as an inverse limit of complex analytic spaces with the same reduction X. The formal deformation space of X is obtained as such an inverse limit, hence it belongs to this category. If, instead of complex analytic, we start in the category of algebraic (Noetherian) schemes, the same approach gives the usual formal schemes. The analytification of a formal deformation is a complex analytic space containing X as a closed complex analytic subvariety, with the formal completion along X identified with \({{\mathcal {X}}}\).

References

  1. Amerik, E., Verbitsky, M.: Rational curves on hyperkähler manifolds. Int. Math. Res. Notices 23, 13009–13045 (2015)

    MATH  Google Scholar 

  2. Amerik, E., Verbitsky, M.: Morrison–Kawamata cone conjecture for hyperkähler manifolds. Ann. Sci. ENS 50(4), 973–993 (2017)

    MATH  Google Scholar 

  3. Amerik, E., Verbitsky, M.: MBM loci in families of hyperkähler manifolds and centers of birational contractions, preprint arxiv:1804.00463

  4. Amerik, E., Verbitsky, M.: MBM classes and contraction loci on low-dimensional hyperkähler manifolds of K3 type, preprint arXiv:1907.13256

  5. Artin, M.: On the solutions of analytic equations. Invent. Math. 5, 277–291 (1968)

    Article  MathSciNet  Google Scholar 

  6. Bakker, B., Lehn, C.: A global Torelli theorem for singular symplectic varieties. arXiv:1612.07894

  7. Bakker, B., Lehn, C.: The global moduli theory of symplectic varieties. arXiv preprint arXiv:1812.09748

  8. Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Internat. Math. Res. Notices 4, 201–215 (1998)

    Article  MathSciNet  Google Scholar 

  9. Beauville, A.: Varietes Kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom. 18, 755–782 (1983)

    MATH  Google Scholar 

  10. Besse, A.: Einstein Manifolds. Springer, New York (1987)

    Book  Google Scholar 

  11. Bogomolov, F.A.: Hamiltonian Kähler manifolds. Sov. Math. Dokl. 19, 1462–1465 (1978)

    MATH  Google Scholar 

  12. Boucksom, S.: Le cône kählérien d’une variété hyperkählérienne. C. R. Acad. Sci. Paris Ser. I Math. 333(10), 935–938 (2001)

    Article  MathSciNet  Google Scholar 

  13. Campana, F.: Connexité rationnelle des variétés de Fano. Ann. Sc. E. N.S. 25, 539–545 (1992)

    MATH  Google Scholar 

  14. Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. SMF t. 85, 77–99 (1957)

    MATH  Google Scholar 

  15. Catanese, F.: A Superficial Working Guide to Deformations and Moduli. Handbook of Moduli, vol. I, pp. 161–215. Int. Press, Somerville, MA (2013)

    MATH  Google Scholar 

  16. Flenner, H., Kosarew, S.: On locally trivial deformations. Publ. Res. Inst. Math. Sci. 23(4), 627–665 (1987)

    Article  MathSciNet  Google Scholar 

  17. Fujiki, A.: On the de Rham Cohomology Group of a compact Kähler symplectic manifold. Adv. Stud. Pure Math. 10, 105–165 (1987)

    Article  Google Scholar 

  18. Guaraldo, F., Macri, P., Tancredi, A.: Topics on Real Analytic Spaces. Advanced Lectures in Mathematics. F. Vieweg, Braunschweig (1986)

    Book  Google Scholar 

  19. Hassett, B., Tschinkel, Y.: Moving and ample cones of holomorphic symplectic fourfolds. Geom. Funct. Anal. 19(4), 1065–1080 (2009)

    Article  MathSciNet  Google Scholar 

  20. Huybrechts, D.: Compact hyperkähler manifolds: basic results. Invent. Math. 135, 63–113 (1999)

    Article  MathSciNet  Google Scholar 

  21. Huybrechts, D.: Erratum to the paper: compact hyperkähler manifolds: basic results. Invent. math. 152, 209–212 (2003)

    Article  MathSciNet  Google Scholar 

  22. Huybrechts, D.: Finiteness results for hyperkähler manifolds. J. Reine Angew. Math. 558, 15–22 (2003). arXiv:math/0109024

    MathSciNet  MATH  Google Scholar 

  23. Kaledin, D., Verbitsky, M.: Period map for non-compact holomorphically symplectic manifolds. GAFA 12, 1265–1295 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79(3), 567–588 (1985)

    Article  MathSciNet  Google Scholar 

  25. Kawamata, Y.: On the length of an extremal rational curve. Invent. Math. 105(3), 609–611 (1991)

    Article  MathSciNet  Google Scholar 

  26. Kebekus, S., Schnell, C.: Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities. arXiv preprint arXiv:1811.03644 (to appear in JAMS)

  27. Kollar, J., Miyaoka, Y., Mori, S.: Rationally connected varieties. J. Algebraic Geom. 1(3), 429–448 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Magnússon, J.: Lectures on Cycle Spaces, Schriftenreihe des Graduiertenkollegs Geometrie und Mathematische Physik (2005)

  29. Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Proceedings of the conference "Complex and Differential Geometry”, Springer Proceedings in Mathematics, Vol. 8, pp. 257–322, (2011) arXiv:math/0601304

  30. Markman, E.: On the existence of universal families of marked hyperkahler varieties, p. 11. arXiv:1701.08690

  31. Markman, E.: Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections. Kyoto J. Math. 53(2), 345–403 (2013)

    Article  MathSciNet  Google Scholar 

  32. Mather, J.: Notes on Topological Stability. Harvard University, Cambridge (1970)

    MATH  Google Scholar 

  33. Moore, C.C.: Ergodicity of flows on homogeneous spaces. Am. J. Math. 88(1), 154–178 (1966)

    Article  MathSciNet  Google Scholar 

  34. Mongardi, G.: A note on the Kähler and Mori cones of hyperkähler manifolds. Asian J. Math. 19(4), 583–591 (2015)

    Article  MathSciNet  Google Scholar 

  35. Namikawa, Y.: On deformations of Q-factorial symplectic varieties. J. Reine Angew. Math. 599, 97–110 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Narasimhan, R.: Imbedding of holomorphically complete complex spaces. Am. J. Math. 82, 917–934 (1960)

    Article  MathSciNet  Google Scholar 

  37. Papayanov, G.: Cohomology of real analytic coherent sheaves, 07.12.2017. https://mathoverflow.net/questions/317121/cohomology-of-real-analytic-coherent-sheaves

  38. Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38(4), 189–213 (1988)

    Article  MathSciNet  Google Scholar 

  39. Parusiński, A.: Lipschitz Stratification, Global Analysis in Modern Mathematics (Orono, ME, 1991; Waltham, MA, 1992), 73–89. Publish or Perish, Houston (1993)

    Google Scholar 

  40. Parusiński, A.: Lipschitz stratification of subanalytic sets. Annales scientifiques de l’É.N.S. 4e série tome 27(6), 661–696 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Ran, Z.: Hodge theory and deformations of maps. Compositio Math. 97(3), 309–328 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Verbitsky, M.: A global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162(15), 2929–2986 (2013)

    Article  MathSciNet  Google Scholar 

  43. Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds. Acta Mathematica 215(1), 161–182 (2015)

    Article  MathSciNet  Google Scholar 

  44. Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds: an erratum. arXiv preprint arXiv:1708.05802

  45. Verdier, J.-L.: Stratifications de Whitney et theoreme de Bertini-Sard. Invent. Math. 36, 295–312 (1976)

    Article  MathSciNet  Google Scholar 

  46. Whitney, H.: Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205–244, Princeton Univ. Press, Princeton, N.J

Download references

Acknowledgements

We are grateful to Fedor Bogomolov for pointing out a potential error in an earlier version of this work, and to Jean–Pierre Demailly, Patrick Popescu, Lev Birbrair and Daniel Barlet for useful discussions. We are especially grateful to Fabrizio Catanese who explained to us the basics of Thom–Mather theory and gave the relevant reference, and to A. Rapagnetta and the anonymous referee of the superseded version of the paper for bringing Bakker and Lehn’s paper to our attention and insisting on its importance for our subject. Much gratitude is due to Grigori Papayanov for insightful comments and the reference in Mathoverflow [37]. The referee of the present version has done a considerable work pointing out our many inaccuracies, we thank him/her very much. Remark 1.7 is inspired by a conversation with Emanuele Macri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Amerik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ekaterina Amerik: Partially supported by the HSE University Basic Research Program and by French-Brasilian Research Network.

Misha Verbitsky: Partially supported by the HSE University Basic Research Program, FAPERJ E-26/202.912/2018 and CNPq-Process 313608/2017-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amerik, E., Verbitsky, M. Contraction centers in families of hyperkähler manifolds. Sel. Math. New Ser. 27, 60 (2021). https://doi.org/10.1007/s00029-021-00677-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00677-8

Keywords

Mathematics Subject Classification

Navigation