Skip to main content
Log in

A remark on regularity of liquid crystal equations in critical Lorentz spaces

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The regularity for the 3-D nematic liquid crystal equations is considered in this paper, it is proved that the Leray–Hopf weak solutions (ud) is in fact smooth, if the velocity field \(u\in L^\infty (0,T;L^{3,\infty }_x(\mathbb {R}^3))\) satisfies some addition local small condition

$$\begin{aligned} r^{-3}\left| \left\{ x\in B_r(x_0): |u(x,t_0)|>\varepsilon r^{-1}\right\} \right| \le \varepsilon , \end{aligned}$$

which is inspired by the papers [2, 35].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(2), 771–831 (1982)

    Article  MathSciNet  Google Scholar 

  2. Choe, H.J., Wolf, J., Yang, M.: On Regularity and singularity for \(L^\infty (0,T;L^{3,\omega }(\mathbb{R}^3))\) solutions to the Navier–Stokes equations. arXiv:1611.0472v1, [math.AP], 15 Nov 2016

  3. Eskauriaza, L., Seregin, G.A., S̆verák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk,Rossi skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 58(2), 3–44 (2003)

    Google Scholar 

  4. Ericksen, J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    Article  MathSciNet  Google Scholar 

  5. Galdi, G.P., Simader, C.G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Di Mat. Pura Ed Appl. (IV) 167, 147–163 (1994)

    Article  MathSciNet  Google Scholar 

  6. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing, River Edge (2003)

    Book  Google Scholar 

  7. Giga, Y., Sohr, H.: Abstract \(L^p\)-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  Google Scholar 

  8. Huang, T., Lin, F.H., Liu, C., Wang, C.Y.: Finite time singularity of the nematic liquid crystal flow in dimension three. Arch. Ration. Mech. Anal. 221(3), 1223–1254 (2016)

    Article  MathSciNet  Google Scholar 

  9. Hong, M.C.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40(1–2), 15–36 (2011)

    Article  MathSciNet  Google Scholar 

  10. Hong, M.C., Li, J.K., Xin, Z.P.: Blow-up criteria of strong solutions to the Ericksen–Leslie system in \(\mathbb{R}^3\). Commun. Partial Differ. Equ. 39(7), 1284–1328 (2014)

    Article  Google Scholar 

  11. Hong, M.C., Xin, Z.P.: Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in \(\mathbb{R}^2\). Adv. Math. 231(3–4), 1364–1400 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ladyžgenskaya, O.A., Seregin, G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)

    Article  MathSciNet  Google Scholar 

  13. Ladyženskaya, O.A.: Uniqueness and smoothness of generalized solutions of Navier–Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 169–185 (1967)

    MathSciNet  Google Scholar 

  14. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  Google Scholar 

  15. Lei, Z., Li, D., Zhang, X.Y.: Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions. Proc. Am. Math. Soc. 142(11), 3801–3810 (2014)

    Article  MathSciNet  Google Scholar 

  16. Lin, F.H.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MathSciNet  Google Scholar 

  17. Lin, F.H.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure. Appl. Math. 51(3), 0241–0257 (1998)

    Article  MathSciNet  Google Scholar 

  18. Lin, F.H., Lin, J.Y., Wang, C.Y.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  Google Scholar 

  19. Lin, F.H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  Google Scholar 

  20. Lin, F.H., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2(1), 1–22 (1996)

    Article  MathSciNet  Google Scholar 

  21. Lin, F.H., Liu, C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Aanl. 154(2), 135–156 (2000)

    Article  MathSciNet  Google Scholar 

  22. Lin, F.H., Wang, C.Y.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029), 20130361 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Lin, F.H., Wang, C.Y.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69(8), 1532–1571 (2016)

    Article  MathSciNet  Google Scholar 

  24. Liu, X., Min, J., Wang, K., Zhang, X.: Serrin’s regularity results for the incompressible liquid crystals system. Discrete Contin. Dyn. Syst.-A 36(10), 5579–5594 (2016)

    Article  MathSciNet  Google Scholar 

  25. Liu, X., Min, J., Zhang, X.: \(L^{3,\infty }\) solutions of the liquid crystals system. J. Differ. Equ. 267, 2643–2670 (2019)

    Article  Google Scholar 

  26. Liu, X., Liu, Z., Min, J.: Regularity criterion for 3D liquid crystal system in critical Lorentz spaces. 2020, preprint

  27. Maremonti, P., Solonnikov, V.A.: On the estimate of solutions of evolution Stokes problem in anisotropic Sobolev spaces with a mixed norm. Zap. Nauchn. Sem. LOMI 223, 124–150 (1994)

    Google Scholar 

  28. Yueyang, Men, Wendong, Wang, Gang, Wu: Endpoint regularity criterion for weak solutions of the 3d incompressible liquid crystals system. Math. Methods Appl. Sci. 41(10), 3672–3683 (2018)

    Article  MathSciNet  Google Scholar 

  29. Phuc, N.C.: The Navier–Stokes equations in nonendpoint borderline Lorentz spaces. J. Math. Fluid Mech. 17(4), 741–760 (2015)

    Article  MathSciNet  Google Scholar 

  30. Prodi, Q.: Un teorema di unicit per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. (4) 48, 173–182 (1959)

    Article  MathSciNet  Google Scholar 

  31. Scheffer, V.: Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 66(2), 535–552 (1976)

    Article  MathSciNet  Google Scholar 

  32. Scheffer, V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  MathSciNet  Google Scholar 

  33. Scheffer, V.: The Navier–Stokes equations on a bounded domain. Commun. Math. Phys. 73, 1–42 (1980)

    Article  MathSciNet  Google Scholar 

  34. Seregin G., Silvestre L., S̆verák V. and Zlatos A., On divergence-free drifts. J. Differ. Equ., 252, 505–540 (2012)

  35. Seregin, G.: A note on weak solutions to the Navier–Stokes equations that are locally in \(L^\infty (L^{3,\infty })\). arXiv:1906.06707v1 [math.AP] 16 Jun 2019

  36. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  37. Solonnikov, V.A.: Estimates of solutions to the linearized system of the Navier–Stokes equations. Trudy Steklov Math. Inst. LXX, 213–317 (1964)

    MathSciNet  Google Scholar 

  38. Struwe, M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 42(4), 437–458 (1988)

    Article  MathSciNet  Google Scholar 

  39. Wolf, J.: On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations. Ann. Univ. Ferrara 61, 149–171 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported partly by NSFC Grant 11971113, 11631011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Y. & Liu, Z. A remark on regularity of liquid crystal equations in critical Lorentz spaces. Annali di Matematica 200, 1709–1734 (2021). https://doi.org/10.1007/s10231-020-01056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01056-4

Keywords

Mathematics Subject Classification

Navigation