Skip to main content
Log in

Analytically stable Higgs bundles on some non-Kähler manifolds

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we study Higgs bundles on non-compact Hermitian manifolds. Under some assumptions for the underlying Hermitian manifolds which are not necessarily Kähler, we solve the Hermitian–Einstein equation on analytically stable Higgs bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Cónsul, L., García-Prada, O.: Hitchin–Kobayashi correspondence, quivers, and vortices. Commun. Math. Phys. 238, 1–33 (2003)

    Article  MathSciNet  Google Scholar 

  2. Biquard, O.: On parabolic bundles over a complex surface. J. Lond. Math. Soc. 53, 302–316 (1996)

    Article  Google Scholar 

  3. Biswas, I.: Stable Higgs bundles on compact Gauduchon manifolds. C. R. Math. Acad. Sci. Paris 349, 71–74 (2011)

    Article  MathSciNet  Google Scholar 

  4. Biswas, I., Loftin, J., Stemmler, M.: The vortex equation on affine manifolds. Trans. Am. Math. Soc. 366, 3925–3941 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135, 1–17 (1990)

    Article  Google Scholar 

  6. Bando, S., Siu, Y.T.: Stable Sheaves and Einstein–Hermitian Metrics, in Geometry and Analysis on Complex Manifolds, pp. 39–50. World Scientific Publishing, River Edge, NJ (1994)

    MATH  Google Scholar 

  7. De Bartolomeis, P., Tian, G.: Stability of complex vector bundles. J. Differ. Geom. 43(2), 231–275 (1996)

    Article  MathSciNet  Google Scholar 

  8. Buchdahl, N.P.: Hermitian–Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988)

    Article  MathSciNet  Google Scholar 

  9. Donaldson, S.K.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985)

    Article  MathSciNet  Google Scholar 

  10. Donaldson, S.K.: Boundary value problems for Yang–Mills fields. J. Geom. Phys. 8, 89–122 (1992)

    Article  MathSciNet  Google Scholar 

  11. García-Prada, O.: Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math. 5(1), 1–52 (1994)

    Article  MathSciNet  Google Scholar 

  12. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Article  MathSciNet  Google Scholar 

  13. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    Article  MathSciNet  Google Scholar 

  14. Huybrechts, D., Lehn, M.: Stable pairs on curves and surfaces. J. Algebr. Geom. 4(1), 67–104 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Jost, J., Zuo, K.: Harmonic maps and \(Sl(r,{\mathbb{C}})\)-representations of fundamental groups of quasiprojective manifolds. J. Algebr. Geom. 5, 77–106 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Kobayashi, S.: Curvature and stability of vector bundles. Proc. Jpn. Acad. Ser. A Math. Sci. 58, 158–162 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Li, J.: Hermitian–Einstein metrics and Chern number inequalities on parabolic stable bundles over Kähler manifolds. Commun. Anal. Geom. 8(3), 445–475 (2000)

    Article  Google Scholar 

  18. Li, J.Y., Narasimhan, M.S.: Hermitian–Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.) 15, 93–114 (1999)

    Article  MathSciNet  Google Scholar 

  19. Li, J., Yau, S.T.: Hermitian–Yang–Mills connection on non-Kähler manifolds. Mathematical aspects of string theory (San Diego, Calif., 1986). Adv. Ser. Math. Phys. 1, 560–573 (1987)

    Google Scholar 

  20. Li, J.Y., Zhang, C., Zhang, X.: Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. Partial Differ. Equ. 56, 1–33 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lübke, M.: Stability of Einstein–Hermitian vector bundles. Manuscr. Math. 42, 245–257 (1983)

    Article  MathSciNet  Google Scholar 

  22. Lübke, M., Teleman, A.: The Universal Kobayashi–Hitchin Correspondence on Hermitian Manifolds, vol. 183, No. 863. Memoirs of the American Mathematical Society (2006). https://doi.org/10.1090/memo/0863

  23. Lübke, M., Teleman, A.: The Kobayashi–Hitchin Correspondence. World Scientific Publishing Co. Inc, River Edge, NJ (1995)

    Book  Google Scholar 

  24. Mochizuki, T.: Kobayashi–Hitchin Correspondence for Tame Harmonic Bundles and an Application, Astérisque. Société Mathématique de France, Paris (2006)

    MATH  Google Scholar 

  25. Mochizuki, T.: Kobayashi–Hitchin correspondence for tame harmonic bundles II. Geom. Topol. 13, 359–455 (2009)

    Article  MathSciNet  Google Scholar 

  26. Mochizuki, T.: Kobayashi–Hitchin Correspondence for Tame Harmonic Bundles and an Application, Astérisque. Société Mathématique de France, Paris (2011)

    Google Scholar 

  27. Mochizuki, T.: Kobayashi–Hitchin correspondence for analytically stable bundles. Trans. Am. Math. Soc. 373(1), 551–596 (2020)

    Article  MathSciNet  Google Scholar 

  28. i Riera, I.M.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Nie, Y., Zhang, X.: Semistable Higgs bundles over compact Gauduchon manifolds. J. Geom. Anal. 28, 627–642 (2018)

    Article  MathSciNet  Google Scholar 

  30. Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82, 540–567 (1965)

    Article  MathSciNet  Google Scholar 

  31. Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  Google Scholar 

  32. Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  Google Scholar 

  33. Uhlenbeck, K.K., Yau, S.-T.: On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Commun. Pure Appl. Math. 39S, S257–S293 (1986)

    Article  MathSciNet  Google Scholar 

  34. Zhang, C.J., Zhang, P., Zhang, X.: Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994

  35. Zhang, X.: Hermitian–Einstein metrics on holomorphic vector bundles over Hermitian manifolds. J. Geom. Phys. 53, 315–335 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The two authors are partially supported by NSF in China No.11625106, 11571332 and 11721101. The first author is also supported by NSF in China No.11801535, the China Postdoctoral Science Foundation (No.2018M642515) and the Fundamental Research Funds for the Central Universities. The research was partially supported by the project “Analysis and Geometry on Bundles” of Ministry of Science and Technology of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \({\mathbb {C}}\) be the plane, \(\omega _{{\mathbb {C}}}\) be the Euclidean metric and \(\varphi _{{\mathbb {C}}}(w)=(1+|w|^{2})^{-1-\delta }\), where w is the complex coordinate of \({\mathbb {C}}\) and \(\delta >0\). By using Simpson’s result ([31], Proposition 2.4), Mochizuki showed that \(({\mathbb {C}}, \omega _{{\mathbb {C}}}, \varphi _{{\mathbb {C}}})\) meets the Assumption 1, i.e., we have the following lemma.

Lemma 5.1

([27], Lemma 3.5) Let \(({\mathbb {C}}, \omega _{{\mathbb {C}}}, \varphi _{{\mathbb {C}}})\) be defined as above. For any nonnegative bounded function f satisfying

$$\begin{aligned} \sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}}}\partial \overline{\partial }f\ge -B\varphi _{{\mathbb {C}}} , \end{aligned}$$
(5.1)

we have

$$\begin{aligned} \sup _{w\in {\mathbb {C}}} f(w)\le C(B)a\left( \int _{{\mathbb {C}}}f \cdot \varphi _{{\mathbb {C}}}\omega _{{\mathbb {C}}}\right) , \end{aligned}$$
(5.2)

where \(a: [0, \infty ) \rightarrow [0, \infty )\) is an increasing function with \(a(0)=0\) and \(a(x) = x\) \((x\ge 1)\), C(B) is a positive constant depending only on B. Moreover, if \(\sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}} }\partial \overline{\partial }f\ge 0\), then f is a constant.

Set

$$\begin{aligned} (M, \omega _{M})=({\mathbb {C}}, \omega _{{\mathbb {C}}})\times (Y, \omega _{Y}), \end{aligned}$$
(5.3)

\(\varphi _{M}(w, \cdot ) =\varphi _{{\mathbb {C}}}(w)\), where \((Y, \omega _{Y})\) is any compact Gauduchon manifold without boundary. Since \(\omega _{{\mathbb {C}}}\) is Kähler and \(\omega _{Y}\) is Gauduchon, the product metric \(\omega _{M}\) is also Gauduchon. Following Mochizuki’s argument [27] and running Moser’s iteration procedure, we can prove the following proposition.

Proposition 5.2

\((M, \omega _{M}, \varphi _{M})\) satisfies the Assumption 1.

Proof

For any nonnegative bounded function \(f:M\rightarrow {\mathbb {R}}\) satisfying

$$\begin{aligned} \sqrt{-1}\Lambda _{\omega _{M}}\partial {\overline{\partial }}f\ge -B\varphi _{M} , \end{aligned}$$
(5.4)

we set

$$\begin{aligned} {\tilde{f}}(w)=\int _{Y}f(w, \cdot )\frac{\omega _{Y}^{n}}{n!}, \end{aligned}$$
(5.5)

where n is the complex dimension of Y. By direct calculation, we derive

$$\begin{aligned} \begin{aligned}&\sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}}}\partial ^{{\mathbb {C}}}{\overline{\partial }}^{{\mathbb {C}}}{\tilde{f}}(w)=\int _{Y}\sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}}}\partial ^{{\mathbb {C}}}{\overline{\partial }}^{{\mathbb {C}}}f(w, \cdot )\frac{\omega _{Y}^{n}}{n!}\\&\qquad =\int _{Y}\sqrt{-1}\left( \Lambda _{\omega _{M}}\partial {\overline{\partial }}f(w, \cdot )-\Lambda _{\omega _{Y}}\partial ^{Y}{\overline{\partial }}^{Y}f(w, \cdot )\right) \frac{\omega _{Y}^{n}}{n!}\\&\qquad =\int _{Y}\sqrt{-1}\Lambda _{\omega _{M}}\partial {\overline{\partial }}f(w, \cdot )\frac{\omega _{Y}^{n}}{n!}\\&\qquad \ge -B\cdot \varphi _{{\mathbb {C}}}(w)\cdot \text {Vol}(Y, \omega _{Y}), \end{aligned} \end{aligned}$$
(5.6)

where we have used the condition that \((Y, \omega _{Y})\) is a compact Gauduchon manifold. Then (5.2) implies

$$\begin{aligned} \sup _{w\in {\mathbb {C}}} {\tilde{f}}(w)\le C(B\cdot \text {Vol}(Y, \omega _{Y}))a\left( \int _{M}f \cdot \varphi _{M}\frac{\omega _{M}^{n+1}}{(n+1)!}\right) . \end{aligned}$$
(5.7)

For any point \(w_{0}\in {\mathbb {C}}\), set \(B_{r}(w_{0}):=\{w\in {\mathbb {C}}\ | \ |w-w_{0}|<r\}\). Then \((X=B_{2}(w_{0})\times Y, \omega _{M})\) is a compact Riemannian manifold with smooth boundary (it doesn’t depend on \(w_{0}\)) and we have the following Sobolev inequality

$$\begin{aligned} \left( \int _{X}|\nu | ^{\frac{2(n+1)}{n}}\frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{n}{2(n+1)}}\le C_{S}\left[ \left( \int _{X}|d\nu | ^{2}\frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{2}}+\left( \int _{X}|\nu | ^{2}\frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{2}}\right] \end{aligned}$$
(5.8)

for any compactly supported function \(\nu \in L_{1}^{2}(X)\). On the other hand, there holds

$$\begin{aligned} \sqrt{-1}\Lambda _{\omega _{M}}\partial {\overline{\partial }}f\ge -B\varphi _{M} \ge -B \end{aligned}$$
(5.9)

on X. In the following, by using the Sobolev inequality (5.8) and the inequality (5.9), we will run Moser’s iteration procedure to obtain a mean value inequality.

Take \(1\le r \le r_{2}<r_{1} \le R \le 2\) and let \(\psi _{1}\in C_{0}^{\infty }(X)\) be the cutoff function such that

$$\begin{aligned} \psi _{1}(x)=\left\{ \begin{aligned} \ 1,&\quad x\in B_{r_{2}}(w_{0})\times Y,\\ \ 0,&\quad x\in X\setminus B_{r_{1}}(w_{0})\times Y, \end{aligned} \right. \end{aligned}$$
(5.10)

\(0\le \psi _{1} (x) \le 1\) and \(|d\psi _{1} |_{\omega _{X}}\le 4(r_{1}-r_{2})\). Set \({\hat{f}}=f+1\). Of course (5.9) implies

$$\begin{aligned} \sqrt{-1}\Lambda _{\omega _{M}}\partial \overline{\partial }{\hat{f}}\ge -B\cdot {\hat{f}}. \end{aligned}$$
(5.11)

Multiplying \({\hat{f}}^{q-1}\psi _{1}^{2}\) on both sides of the inequality (5.11) (\(q\ge 2\)), and integrating it over X, we know

$$\begin{aligned} \begin{aligned}&-B\int _{X}{\hat{f}}^{q} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\le \int _{X}\sqrt{-1}{\hat{f}}^{q-1} \cdot \psi _{1}^{2}\partial {\overline{\partial }}{\hat{f}}\wedge \frac{\omega _{M}^{n}}{n!}\\ =\,&\int _{X}\sqrt{-1}\partial ({\hat{f}}^{q-1} \cdot \psi _{1}^{2} {\overline{\partial }}{\hat{f}}\wedge \frac{\omega _{M}^{n}}{n!})-\int _{X}\sqrt{-1}\partial ({\hat{f}}^{q-1} \cdot \psi _{1}^{2})\wedge {\overline{\partial }}{\hat{f}}\wedge \frac{\omega _{M}^{n}}{n!}\\&+\int _{X}\sqrt{-1}{\hat{f}}^{q-1} \cdot \psi _{1}^{2} {\overline{\partial }}{\hat{f}}\wedge \partial \left( \frac{\omega _{M}^{n}}{n!}\right) \\ =\,&-\int _{X}\sqrt{-1}(q-1){\hat{f}}^{q-2} \cdot \psi _{1}^{2} \partial {\hat{f}}\wedge {\overline{\partial }}{\hat{f}}\wedge \frac{\omega _{M}^{n}}{n!} -\int _{X}2\sqrt{-1}{\hat{f}}^{q-1} \cdot \psi _{1} \partial \psi _{1}\wedge {\overline{\partial }}{\hat{f}}\wedge \frac{\omega _{M}^{n}}{n!}\\&+\int _{X}\sqrt{-1}{\hat{f}}^{q-1} \cdot \psi _{1}^{2} {\overline{\partial }}{\hat{f}}\wedge \partial \omega _{M}\wedge \frac{\omega _{M}^{n-1}}{(n-1)!}.\\ \end{aligned} \end{aligned}$$
(5.12)

Because the manifold Y is compact, there is a uniform constant \(C_{1}\) such that \(\sup _{X}|\partial \omega _{M}|_{\omega _{M}}\le C_{1}\), and then

$$\begin{aligned} \begin{aligned}&\left| \frac{{\overline{\partial }}{\hat{f}}\wedge \partial \omega _{M}\wedge \left( \frac{\omega _{M}^{n-1}}{(n-1)!}\right) }{\frac{\omega _{M}^{n+1}}{(n+1)!}}\right| \\ \le&C_{2}|{\overline{\partial }}{\hat{f}}|_{\omega _{M}}|\partial \omega _{M}|_{\omega _{M}}\le C_{3}|{\overline{\partial }}{\hat{f}}|_{\omega _{M}}.\\ \end{aligned} \end{aligned}$$
(5.13)

On the other hand, applying Cauchy’s inequality, we have

$$\begin{aligned} |{\overline{\partial }}{\hat{f}}|_{\omega _{M}}{\hat{f}}^{q-1}\psi _{1}^{2}\le \epsilon |{\overline{\partial }}{\hat{f}}|_{\omega _{M}}^{2}{\hat{f}}^{q-2}\psi _{1}^{2}+\frac{1}{4\epsilon }{\hat{f}}^{q}\psi _{1}^{2} \end{aligned}$$
(5.14)

and

$$\begin{aligned} 2|{\overline{\partial }}{\hat{f}}|_{\omega _{M}}|\partial \psi _{1}|_{\omega _{M}}{\hat{f}}^{q-1}\psi _{1}\le \epsilon |{\overline{\partial }}{\hat{f}}|_{\omega _{M}}^{2}{\hat{f}}^{q-2}\psi _{1}^{2}+\frac{1}{\epsilon }{\hat{f}}^{q}|\partial \psi _{1}|_{\omega _{M}}, \end{aligned}$$
(5.15)

where \(\epsilon\) is a positive constant which will be chosen later. By (5.12), (5.13), (5.14) and (5.15), we conclude that

$$\begin{aligned} \begin{aligned}&\int _{X}|\partial {\hat{f}}^{\frac{q}{2}}|^{2} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\le \frac{q^{2}}{4(q-1)}\left( B+\frac{C_{3}}{4\epsilon }\right) \int _{X} {\hat{f}}^{q} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\\&+\frac{q^{2}}{4\epsilon (q-1)}\int _{X} {\hat{f}}^{q} |\partial \psi _{1}|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}+\frac{\epsilon (C_{3}+1)}{q-1}\int _{M} \psi _{1}^{2} |\partial {\hat{f}}^{\frac{q}{2}}|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}.\\ \end{aligned} \end{aligned}$$
(5.16)

Choose \(\epsilon =\frac{q-1}{2(C_{3}+1)}\), then

$$\begin{aligned} \begin{aligned}&\int _{X}|\partial {\hat{f}}^{\frac{q}{2}}|^{2} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\le \frac{q^{2}}{2(q-1)}\left( B+\frac{C_{3}}{2\epsilon }\right) \int _{X} {\hat{f}}^{q} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\\&+\frac{2q^{2}(C_{3}+1)}{(q-1)^{2}}\int _{X} {\hat{f}}^{q} |\partial \psi _{1}|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\\ \end{aligned} \end{aligned}$$
(5.17)

and

$$\begin{aligned} \begin{aligned}&\int _{X}|\partial \left( {\hat{f}}^{\frac{q}{2}}\cdot \psi _{1}\right) |^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\le 2\int _{X}|\partial {\hat{f}}^{\frac{q}{2}}|^{2} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}+2\int _{X} {\hat{f}}^{q} |\partial \psi _{1}|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\\ \le&\frac{q^{2}}{q-1}\left( B+\frac{C_{3}}{2\epsilon }\right) \int _{X} {\hat{f}}^{q} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!} +\frac{4q^{2}(C_{3}+1)}{(q-1)^{2}}\int _{X} {\hat{f}}^{q} |\partial \psi _{1}|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}.\\ \end{aligned} \end{aligned}$$
(5.18)

Using (5.18) and the Sobolev inequality (5.8) (\(\nu ={\hat{f}}^{\frac{q}{2}}\cdot \psi _{1}\)), one can get

$$\begin{aligned} \begin{aligned}&\left( \int _{B_{r_{2}}(w_{0})\times Y}{\hat{f}}^{q\cdot \frac{n+1}{n}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{n}{n+1}}\le \left( \int _{X}\left( {\hat{f}}^{q}\psi _{1}^{2}\right) ^{ \frac{n+1}{n}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{n}{n+1}}\\ \le&2C_{S}^{2}[\int _{M}2|\partial ({\hat{f}}^{\frac{q}{2}}\cdot \psi _{1})|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}+ \int _{X}{\hat{f}}^{q}\psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!} ]\\ \le&2C_{S}^{2}\left( \frac{2q^{2}}{q-1}\left( B+\frac{C_{3}}{2\epsilon }\right) +1\right) \int _{M} {\hat{f}}^{q} \cdot \psi _{1}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\\&+2C_{S}^{2}\frac{4q^{2}(C_{3}+1)}{(q-1)^{2}}\int _{M} {\hat{f}}^{q} |\partial \psi _{1}|^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\\ \le&C_{4}q^{2}((r_{1}-r_{2})^{-2}+1)\int _{B_{r_{1}}(w_{0})\times Y}{\hat{f}}^{q} \frac{\omega _{M}^{n+1}}{(n+1)!} \end{aligned} \end{aligned}$$
(5.19)

and then

$$\begin{aligned}&\left( \int _{B_{r_{2}}(w_{0})\times Y}{\hat{f}}^{q\cdot \frac{n+1}{n}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{n}{q\cdot (n+1)}}\nonumber \\&\quad \le (C_{4}q^{2}((r_{1}-r_{2})^{-2}+1))^{\frac{1}{q}}\left( \int _{B_{r_{1}}(w_{0})\times Y}{\hat{f}}^{q} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{q}}, \end{aligned}$$
(5.20)

where \(C_{4}\) is a positive constant depending only on B, \(C_{S}\) and \(\sup _{Y}|\partial \omega _{Y}|\). Let \(R_{i}=r+2^{-i}\cdot (R-r)\), \(q_{i}=2(\frac{n+1}{n})^{i}\). Substituting \(r_{2}=R_{i+1}\), \(r_{1}=R_{i}\) and \(q=q_{i}\) into (5.20), we obtain

$$\begin{aligned} \begin{aligned}&\left( \int _{B_{R_{i+1}}(w_{0})\times Y}{\hat{f}}^{q_{i+1}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{q_{i+1}}}\\ \le&C_{5}^{\left( \frac{n+1}{n}\right) ^{-i}}\left( \frac{2n+2}{n}\right) ^{i \left( \frac{n+1}{n}\right) ^{-i}}((R-r)^{-2}+1)^{ \frac{1}{2}\left( \frac{n+1}{n}\right) ^{-i}}\left( \int _{B_{R_{i}}(w_{0})\times Y}{\hat{f}}^{q_{i}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{q_{i}}}.\\ \end{aligned} \end{aligned}$$
(5.21)

Iterating the inequality (5.21) and using \(\sum _{i=0}^{\infty }k^{-i}=\frac{k}{k-1}\), \(\sum _{i=0}^{\infty }(i+1)k^{-i}=\frac{k^{2}}{(k-1)^{2}}\), we conclude that

$$\begin{aligned} \begin{aligned} \sup _{B_{r}(w_{0})\times Y}{\hat{f}}&\le \lim _{i\rightarrow +\infty }\left( \int _{B_{R_{i+1}}(w_{0})\times Y}{\hat{f}}^{q_{i+1}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{q_{i+1}}}\\&\le C_{6}((R-r)^{-2}+1)^{\frac{n+1}{2}}\left( \int _{B_{R}(w_{0})\times Y}{\hat{f}}^{2} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{2}},\\ \end{aligned} \end{aligned}$$
(5.22)

where \(C_{6}\) is a positive constant depending only on B, n, \(C_{S}\) and \(\sup _{Y}|\partial \omega _{Y}|\). For any \(0< {\tilde{r}} \le 2\) and \(0< \delta <1\), let \(h_{0}=\delta {\tilde{r}}\), \(h_{i}=h_{i-1}+2^{-i}(1-\delta ){\tilde{r}}\) for each \(i=1, 2, 3, \cdots\). Putting \(r=h_{i}\) and \(R=h_{i+1}\) into (5.22), we have

$$\begin{aligned} \begin{aligned}&\sup _{B_{h_{i}}(w_{0})\times Y}{\hat{f}}\\ \le&C_{6}\left( (1-\delta )^{-2}{\tilde{r}}^{-2}+1\right) ^{\frac{n+1}{2}}2^{i(n+1)}\left( \int _{B_{h_{i+1}}(w_{0})\times Y}{\hat{f}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{2}}\left( \sup _{B_{h_{i+1}}(w_{0})\times Y}{\hat{f}}\right) ^{\frac{1}{2}}.\\ \end{aligned} \end{aligned}$$
(5.23)

Denote \(A(i):=\sup _{B_{h_{i}}(w_{0})\times Y}{\hat{f}}\). Then (5.23) yields

$$\begin{aligned} \begin{aligned} A(0)&\le \prod _{i=0}^{j-1}\left\{ C_{6}((1-\delta )^{-2}{\tilde{r}}^{-2}+1)^{\frac{n+1}{2}}2^{i(n+1)}\left( \int _{B_{{\tilde{r}}}(w_{0})\times Y}{\hat{f}} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) ^{\frac{1}{2}}\right\} ^{2^{-i}}A(j)^{2^{-j}}\\&\le C_{7}((1-\delta )^{-2}{\tilde{r}}^{-2}+1)^{n+1}\int _{B_{{\tilde{r}}}(w_{0})\times Y}{\hat{f}} \frac{\omega _{M}^{n+1}}{(n+1)!}, \end{aligned} \end{aligned}$$
(5.24)

where \(C_{7}\) is a positive constant depending only on B, n, \(C_{S}\) and \(\sup _{Y}|\partial \omega _{Y}|\). Take \({\tilde{r}}=2\) and \(\delta =\frac{1}{2}\). Clearly (5.24) gives us that

$$\begin{aligned} \sup _{B_{1}(w_{0})\times Y}{\hat{f}}\le C_{8}\int _{B_{2}(w_{0})\times Y}{\hat{f}} \frac{\omega _{M}^{n+1}}{(n+1)!} \end{aligned}$$
(5.25)

and

$$\begin{aligned} \begin{aligned} \sup _{B_{1}(w_{0})\times Y}f&\le C_{8}\left( \int _{B_{2}(w_{0})\times Y}f \frac{\omega _{M}^{n+1}}{(n+1)!}+\text {Vol}(B_{2}(w_{0}))\cdot \text {Vol}(Y, \omega _{Y})\right) \\&\le C_{8}\left( \int _{B_{2}(w_{0})}{\tilde{f}} \omega _{{\mathbb {C}}}+\text {Vol}(B_{2}(w_{0}))\cdot \text {Vol}(Y, \omega _{Y})\right) \\&\le C_{9}\left( a\left( \int _{M}f\cdot \varphi _{M} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) +1\right) ,\\ \end{aligned} \end{aligned}$$
(5.26)

where \(C_{8}\) and \(C_{9}\) are positive constants depending only on B, n, \(C_{S}\) and \(\sup _{Y}|\partial \omega _{Y}|\). Since \(w_{0}\) is arbitrary, we have

$$\begin{aligned} \sup _{M}f \le C_{9}\left( a\left( \int _{M}f\cdot \varphi _{M} \frac{\omega _{M}^{n+1}}{(n+1)!}\right) +1\right) . \end{aligned}$$
(5.27)

Suppose that \(\sqrt{-1}\Lambda _{\omega _{M}}\partial {\overline{\partial }} f \ge 0\) on M. From the definition of \({\tilde{f}}\) and the condition \(\omega _{Y}\) is Gauduchon, it is easy to see that \({\tilde{f}}\) is a bounded function on \(({\mathbb {C}}, \omega _{{\mathbb {C}}})\) and satisfies \(\sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}}}\partial ^{{\mathbb {C}}} {\overline{\partial }}^{{\mathbb {C}}} {\tilde{f}} \ge 0\). According to Lemma 5.1, we know that \({\tilde{f}}\equiv {\tilde{C}}\). Set

$$\begin{aligned} f_{1}(w, \cdot )=f(w, \cdot )-\frac{{\tilde{C}}}{\text {Vol} (Y, \omega _{Y})}. \end{aligned}$$
(5.28)

Then

$$\begin{aligned} \int _{\{w\}\times Y}f_{1}\frac{\omega _{Y}^{n}}{n!}=0 \end{aligned}$$
(5.29)

and

$$\begin{aligned} \begin{aligned}&\sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}}}\partial ^{{\mathbb {C}}} {\overline{\partial }}^{{\mathbb {C}}}\int _{\{w\}\times Y}|f_{1}|^{2}\frac{\omega _{Y}^{n}}{n!}=\sqrt{-1}\Lambda _{\omega _{{\mathbb {C}}}}\partial ^{{\mathbb {C}}} {\overline{\partial }}^{{\mathbb {C}}}\int _{\{w\}\times Y}|f|^{2}\frac{\omega _{Y}^{n}}{n!}\\&\quad \ge \int _{\{w\}\times Y}\sqrt{-1}\Lambda _{\omega _{M}}\partial ^{M} {\overline{\partial }}^{M}|f|^{2}\frac{\omega _{Y}^{n}}{n!}\\&\quad \ge \int _{\{w\}\times Y}2|\partial f_{1}|^{2}\frac{\omega _{Y}^{n}}{n!}\\&\quad \ge C_{p}\int _{\{w\}\times Y}| f_{1}|^{2}\frac{\omega _{Y}^{n}}{n!},\\ \end{aligned} \end{aligned}$$
(5.30)

where we have used the Poincaré inequality on the compact Riemannian manifold \((Y, \omega _{Y})\). Applying Lemma 5.1 again, we have \(f_{1}\equiv 0\) and then f is constant.

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, X. Analytically stable Higgs bundles on some non-Kähler manifolds. Annali di Matematica 200, 1683–1707 (2021). https://doi.org/10.1007/s10231-020-01055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01055-5

Keywords

Mathematics Subject Classification

Navigation