Skip to main content
Log in

The tradeoff between noise, data rate, and power consumption of transimpedance amplifiers for optical receivers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The inverter-based shunt-feedback transimpedance amplifier (TIA) has become an essential building block for high-speed receivers for optical interconnects in advanced technologies due to its low operating voltage and high efficiency. Previously, the design of TIA’s optimal noise is based on the relationship between the photodetector’s capacitance, \(C_{{\mathrm {D}}}\), and the TIA’s capacitance, \(C_{{\mathrm {I}}}\). In this paper, we present a method to calculate the accurate size of the inverter-based amplifier, feedback resistance \(R_F\), and load capacitance \(C_o\) for the optimal noise. Next, we further discuss the impact of the quality factor, channel length, and input parasitics on these parameters. Our analysis is applied to 65 nm CMOS technology based on MATLAB calculations. The predicted results agree well with the simulation results, offering valuable interpretations and conclusions that reveal the inherent tradeoffs among noise, data rate, and power consumption in the broadband optical TIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy, M., Jia, B., Jia, Y., Kalro, A., Law, J., Lee, K., Lu, J., Noordhuis, P., Smelyanskiy, M., Xiong, L., & Wang, X. (2018). Applied machine learning at Facebook: a datacenter infrastructure perspective. In 2018 IEEE international symposium on high performance computer architecture (HPCA) (pp. 620–629).

  2. Cisco Visual Networking. (2017). The zettabyte era-trends and analysis. Cisco white paper.

  3. Cheng, Q., Bahadori, M., Glick, M., Rumley, S., & Bergman, K. (2018). Recent advances in optical technologies for data centers: A review. Optica, 5(11), 1354–1370.

    Article  Google Scholar 

  4. Li, D., Minoia, G., Repossi, M., Baldi, D., Temporiti, E., Mazzanti, A., et al. (2014). A low-noise design technique for high-speed CMOS optical receivers. IEEE Journal of Solid-State Circuits, 49(6), 1437–1447.

    Article  Google Scholar 

  5. Lakshmikumar, K., Kurylak, A., Nagaraju, M., Booth, R., & Pampanin, J. (2018.) A process and temperature insensitive CMOS linear TIA for 100 Gbps/\(\lambda\) PAM-4 optical links. In 2018 IEEE custom integrated circuits conference (CICC) (pp. 1–4).

  6. Takemoto, T., Yamashita, H., Yazaki, T., Chujo, N., Lee, Y., & Matsuoka, Y. (2014). A 25-to-28 Gb/s high-sensitivity (\(-9.7\) dBm) 65 nm CMOS optical receiver for board-to-board interconnects. IEEE Journal of Solid-State Circuits, 49(10), 2259–2276.

  7. Chen, Y., Kibune, M., Toda, A., Hayakawa, A., Akiyama, T., Sekiguchi, S., Ebe, H., Imaizumi, N., Akahoshi, T., Akiyama, S., Tanaka, S., Simoyama, T., Morito, K., Yamamoto, T., Mori, T., Koyanagi, Y., & Tamura, H. (2015). A 25 Gb/s hybrid integrated silicon photonic transceiver in 28 nm CMOS and SOI. In 2015 IEEE international solid-state circuits conference—(ISSCC) digest of technical papers (pp. 1–3).

  8. Aoki, T., Sekiguchi, S., Simoyama, T., Tanaka, S., Nishizawa, M., Hatori, N., et al. (2018). Low-crosstalk simultaneous 16-channel \(\times\) 25 Gb/s operation of high-density silicon shotonics optical transceiver. Journal of Lightwave Technology, 36(5), 1262–1267.

  9. Takemoto, T., Matsuoka, Y., Yamashita, H., Lee, Y., Arimoto, H., Kokubo, M., et al. (2018). A 50-Gb/s high-sensitivity (\(-9.2\) dBm) low-power (7.9 pJ/bit) optical receiver based on 0.18-\(\mu\)m SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 53(3), 1518–1538.

  10. Yu, K., Li, C., Li, H., Titriku, A., Shafik, A., Wang, B., et al. (2016). A 25 Gb/s hybrid-integrated silicon photonic source-synchronous receiver with microring wavelength stabilization. IEEE Journal of Solid-State Circuits, 36(9), 2129–2141.

    Article  Google Scholar 

  11. Raj, M., Saeedi, S., & Emami, A. (2016). A wideband injection locked quadrature clock generation and distribution technique for an energy-proportional 16–32 Gb/s optical receiver in 28 nm FDSOI CMOS. IEEE Journal of Solid-State Circuits, 51(10), 2446–2462.

    Article  Google Scholar 

  12. Ozkaya, I., Cevrero, A., Francese, P. A., Menolfi, C., Morf, T., Brändli, M., et al. (2017). A 64-gb/s 1.4-pj/b nrz optical receiver data-path in 14-nm cmos finfet. IEEE Journal of Solid-State Circuits, 52(12), 3458–3473.

    Article  Google Scholar 

  13. Ahmed, M. G., Talegaonkar, M., Elkholy, A., Shu, G., Elmallah, A., Rylyakov, A., et al. (2018). A 12-Gb/s–16.8-dBm OMA sensitivity 23-mW optical receiver in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 53(2), 445–457.

    Article  Google Scholar 

  14. Huang, S., & Chen, W. (2017). A 25 Gb/s 1.13 pJ/b \(-10.8\) dBm input sensitivity optical receiver in 40 nm CMOS. IEEE Journal of Solid-State Circuits, 52(3), 747–756.

  15. Sharif-Bakhtiar, A., & Carusone, A. C. (2016). A 20 Gb/s CMOS optical receiver with limited-bandwidth front end and local feedback IIR-DFE. IEEE Journal of Solid-State Circuits, 51(11), 2679–2689.

    Article  Google Scholar 

  16. Nazari, M. H., & Emami-Neyestanak, A. (2013). A 24-Gb/s double-sampling receiver for ultra-low-power optical communication. IEEE Journal of Solid-State Circuits, 48(2), 344–357.

    Article  Google Scholar 

  17. Saeedi, S., & Emami, A. (2014). A 25 Gb/s 170\(\mu\)W/Gb/s optical receiver in 28 nm CMOS for chip-to-chip optical communication. In 2014 IEEE radio frequency integrated circuits symposium (pp. 283–286).

  18. Sackinger, E. (2012). On the noise optimum of FET broadband transimpedance amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2881–2889.

    Article  MathSciNet  Google Scholar 

  19. Li, J., Zheng, X., Krishnamoorthy, A. V., & Buckwalter, J. F. (2016). Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes. Journal of Lightwave Technology, 34(11), 2730–2742.

    Article  Google Scholar 

  20. Ahmed, A. H., Sharkia, A., Casper, B., Mirabbasi, S., & Shekhar, S. (2016). Silicon-photonics microring links for datacenters—Challenges and opportunities. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 194–203.

    Article  Google Scholar 

  21. Settaluri, K. T., Lalau-Keraly, C., Yablonovitch, E., & Stojanović, V. (2017). First principles optimization of opto-electronic communication links. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(5), 1270–1283.

    Article  Google Scholar 

  22. Bahadori, M., Rumley, S., Polster, R., Gazman, A., Traverso, M., Webster, M., et al. (2017). Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing. Design, Automation Test in Europe Conference Exhibition, 2017, 326–331.

    Article  Google Scholar 

  23. Polster, R., Thonnart, Y., Waltener, G., Gonzalez, J., & Cassan, E. (2016). Efficiency optimization of silicon photonic links in 65-nm CMOS and 28-nm FDSOI technology nodes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(12), 3450–3459.

    Article  Google Scholar 

  24. Liu, F. Y., Patil, D., Lexau, J., Amberg, P., Dayringer, M., Gainsley, J., et al. (2012). 10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS. IEEE Journal of Solid-State Circuits, 47(9), 2049–2067.

    Article  Google Scholar 

  25. Smith, R. G., & Personick, S. D. (1980). Receiver design for optical fiber communication systems. In Topics in applied physics: Semiconductor devices for optical communication (vol. 39).

  26. Abidi, A. A. (1984). Gigahertz transresistance amplifiers in fine line nmos. IEEE Journal of Solid-State Circuits, 19(6), 986–994.

    Article  Google Scholar 

  27. Sackinger, E. (2005). Broadband circuits for optical fiber communication. Hoboken: Wiley.

    Book  Google Scholar 

  28. Johns, D., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

    MATH  Google Scholar 

  29. Razavi, B. (2012). Design of integrated circuits for optical communications. Hoboken: Wiley.

    Google Scholar 

  30. Sackinger, E. (2010). The transimpedance limit. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1848–1856.

    Article  MathSciNet  Google Scholar 

  31. Sackinger, E. (2018). Analysis and design of transimpedance amplifiers for optical receivers. Hoboken: Wiley.

    Google Scholar 

  32. Morikuni, J. J., Dharchoudhury, A., Leblebici, Y., & Kang, S. M. (1994). Improvements to the standard theory for photoreceiver noise. Journal of Lightwave Technology, 12(7), 1174–1184.

    Article  Google Scholar 

  33. Bahadori, M., Rumley, S., Polster, R., Gazman, A., Traverso, M., Webster, M., Patel, K., & Bergman, K. (2017). Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing. In Design, automation test in Europe conference exhibition (DATE), 2017 (pp. 326–331).

Download references

Acknowledgements

The authors would like to thank Kadaba R. (Kumar) Lakshmikumar from Cisco Systems for technical discussions. The data, models or code generated during and analyzed during the current study are available from the corresponding author on reasonable request but can be subject to non-disclosure agreements with semiconductor foundries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by U.S. Department of Energy Advanced Research Projects Agency Energy under ENLITENED Grant DE-AR0000843.

Appendix

Appendix

1.1 Derivation of transfer function

In Fig. 3, we use Kirchhoff’s laws to derive

$$\begin{aligned} i_{{\mathrm {in}}}&= s C_{{\mathrm {T}}} v_{{\mathrm {in}}} \!+\! (s C_{{\mathrm {F}}} \!+\! g_{{\mathrm {F}}}) \!(v_{{\mathrm {in}}} \!-\! v_{{\mathrm {o}}}) \end{aligned}$$
(10a)
$$\begin{aligned} (s C_{{\mathrm {F}}} \!+\! g_{{\mathrm {F}}}) \!(v_{{\mathrm {in}}} \!-\! v_{{\mathrm {o}}})&= g_m v_{{\mathrm {in}}} + (s C_{{\mathrm {o}}} + g_{{\mathrm {o}}}) v_{{\mathrm {o}}}, \end{aligned}$$
(10b)

where \(g_{{\mathrm {F}}} = 1/R_{{\mathrm {F}}}\) and \(g_{{\mathrm {o}}} = 1/R_{{\mathrm {o}}}\). (1) follows from (10).

We next explain the approximation of the first equation in (1). First, it is easy to understand \(A_0 R_{{\mathrm {F}}} \gg R_{{\mathrm {o}}}\), so we can omit the term \(R_{{\mathrm {o}}}\) in the numerator. Second, the zero from the numerator is located at

$$\begin{aligned} f_z = \frac{A_0}{2 \pi C_{{\mathrm {F}}} R_{{\mathrm {o}}}} = \frac{g_m}{2 \pi C_{{\mathrm {F}}}} > \frac{g_m}{2 \pi C_{{\mathrm {gs}}}}, \end{aligned}$$
(11)

which is even higher than the CMOS transit frequency, \(f_{{\mathrm {T}}}\). As a result, the approximation is completely reasonable.

1.2 Derivation of input-referred noise current

Fig. 11
figure 11

Schematic for the calculation of input-referred noise

First, we calculate the input-referred noise current density and derive (2). Second, we derive the total input-referred noise current through integral in (3).

To calculate the input-referred noise current density, we need to find the input-referred noise for noise sources \(\overline{i_{{\mathrm {n.res}}}^2}\) and \(\overline{i_{{\mathrm {n.D}}}^2}\), and they can be calculated through output noise. As shown in Fig. 11, let us calculate the output voltages \(v_{{\mathrm {o.a}}}\), \(v_{{\mathrm {o.b}}}\), and \(v_{{\mathrm {o.c}}}\) respectively. The admittance \(Y_{{\mathrm {F}}} = 1/Z_{{\mathrm {F}}}\) consists of the parallel of \(R_{{\mathrm {F}}}\) and \(C_{{\mathrm {F}}}\). The admittance \(Y_{{\mathrm {o}}} = 1/Z_{{\mathrm {o}}}\) consists of the parallel of \(R_{{\mathrm {o}}}\) and \(C_{{\mathrm {o}}}\).

From Fig. 11(a), Kirchhoff’s laws yield

$$\begin{aligned} - i_{{\mathrm {n.TIA}}}&= s C_{{\mathrm {T}}} v_{{\mathrm {in.a}}} + Y_{{\mathrm {F}}} (v_{{\mathrm {in.a}}} - v_{{\mathrm {o.a}}}) \end{aligned}$$
(12a)
$$\begin{aligned} 0&= Y_{{\mathrm {F}}} (v_{{\mathrm {in.a}}} - v_{{\mathrm {o.a}}}) + g_m v_{{\mathrm {in.a}}} + Y_{{\mathrm {o}}} v_{{\mathrm {o.a}}}. \end{aligned}$$
(12b)

Solving (12), we get

$$\begin{aligned} i_{{\mathrm {n.TIA}}} = \frac{sC_{{\mathrm {T}}}(Y_{{\mathrm {o}}} + Y_{{\mathrm {F}}}) + (Y_{{\mathrm {o}}} + g_m) Y_{{\mathrm {F}}}}{g_m - Y_{{\mathrm {F}}}} v_{{\mathrm {o.a}}} = H_{{\mathrm {a}}}(s) v_{{\mathrm {o.a}}} \end{aligned}$$
(13)

Similarly, from Fig. 11(b), Kirchhoff’s laws yield

$$\begin{aligned} - i_{{\mathrm {n.res}}}&= s C_{{\mathrm {T}}} v_{{\mathrm {in.b}}} + Y_{{\mathrm {F}}} (v_{{\mathrm {in.b}}} - v_{{\mathrm {o.b}}}) \end{aligned}$$
(14a)
$$\begin{aligned} i_{{\mathrm {n.res}}}&= Y_{{\mathrm {F}}} (v_{{\mathrm {in.b}}} - v_{{\mathrm {o.b}}}) + g_m v_{{\mathrm {in.b}}} + Y_{{\mathrm {o}}} v_{{\mathrm {o.b}}}, \end{aligned}$$
(14b)

and the solution is

$$\begin{aligned} i_{{\mathrm {n.res}}} = \frac{sC_{{\mathrm {T}}}(Y_{{\mathrm {o}}} + Y_{{\mathrm {F}}}) + (Y_{{\mathrm {o}}} + g_m) Y_{{\mathrm {F}}}}{g_m + sC_{{\mathrm {T}}}} v_{{\mathrm {o.b}}} = H_{{\mathrm {b}}}(s) v_{{\mathrm {o.b}}}. \end{aligned}$$
(15)

From Fig. 11(c), Kirchhoff’s laws yield

$$\begin{aligned} 0&= s C_{{\mathrm {T}}} v_{{\mathrm {in.c}}} + Y_{{\mathrm {F}}} (v_{{\mathrm {in.c}}} - v_{{\mathrm {o.c}}}) \end{aligned}$$
(16a)
$$\begin{aligned} i_{{\mathrm {n.D}}}&= Y_{{\mathrm {F}}} (v_{{\mathrm {in.c}}} - v_{{\mathrm {o.c}}}) + g_m v_{{\mathrm {in.c}}} + Y_{{\mathrm {o}}} v_{{\mathrm {o.c}}}, \end{aligned}$$
(16b)

and the solution is

$$\begin{aligned} i_{{\mathrm {n.D}}} = \frac{sC_{{\mathrm {T}}}(Y_{{\mathrm {o}}} + Y_{{\mathrm {F}}}) + (Y_{{\mathrm {o}}} + g_m) Y_{{\mathrm {F}}}}{Y_{{\mathrm {F}}} + sC_T} v_{{\mathrm {o.c}}} = H_{{\mathrm {c}}}(s) v_{{\mathrm {o.c}}}. \end{aligned}$$
(17)

With \(v_{{\mathrm {o.a}}} = v_{{\mathrm {o.b}}} = v_{{\mathrm {o.b}}}\) and \(Y_{{\mathrm {F}}} = sC_{{\mathrm {F}}} +1/R_{{\mathrm {F}}}\), we can get the ratio

$$\begin{aligned} \begin{aligned} \,{\mathrm {d}}\overline{i_{{\mathrm {n.TIA}}}^2}&= \frac{|H_{{\mathrm {a}}}(s)|^2}{|H_{{\mathrm {b}}}(s)|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.res}}}^2} + \frac{|H_{{\mathrm {a}}}(s)|^2}{|H_{{\mathrm {c}}}(s)|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.D}}}^2} \\&= \frac{|g_m + sC_{{\mathrm {T}}}|^2}{|g_m - Y_{{\mathrm {F}}}|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.res}}}^2} + \frac{|Y_{{\mathrm {F}}} + sC_{{\mathrm {T}}}|^2}{|g_m - Y_{{\mathrm {F}}}|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.D}}}^2} \\&= \frac{|A_{{\mathrm {o}}} R_{{\mathrm {F}}} + sC_{{\mathrm {T}}}R_{{\mathrm {F}}} R_{{\mathrm {o}}}|^2}{|A_{{\mathrm {o}}} R_{{\mathrm {F}}} - R_{{\mathrm {o}}} - sC_{{\mathrm {F}}} R_{{\mathrm {F}}} R_{{\mathrm {o}}}|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.res}}}^2} \\& {} + \frac{|R_{{\mathrm {o}}} + s(C_{{\mathrm {T}}}+C_{{\mathrm {F}}})R_{{\mathrm {F}}} R_{{\mathrm {o}}}|^2}{|A_{{\mathrm {o}}} R_{{\mathrm {F}}} - R_{{\mathrm {o}}} - sC_{{\mathrm {F}}} R_{{\mathrm {F}}} R_{{\mathrm {o}}}|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.D}}}^2}. \\ \end{aligned} \end{aligned}$$
(18)

To better understand the result, if we apply \(C_{{\mathrm {F}}} = 0\) and \(R_{{\mathrm {F}}} \gg R_{{\mathrm {o}}}\) to (18), we reach the same equation as in [31].

Now we derive the total input-referred noise current through integral.

$$\begin{aligned} \overline{i_{{\mathrm {n.TIA}}}^2} = \int \frac{|Z_{{\mathrm {T}}}(s)|^2}{|Z_{{\mathrm {T}}}(0)|^2} \,{\mathrm {d}}\overline{i_{{\mathrm {n.TIA}}}^2} \end{aligned}$$
(19)

Using the first equation in (1) without any approximation, we can get (3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kinget, P.R. The tradeoff between noise, data rate, and power consumption of transimpedance amplifiers for optical receivers. Analog Integr Circ Sig Process 108, 437–446 (2021). https://doi.org/10.1007/s10470-021-01895-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01895-y

Keywords

Navigation