Skip to main content
Log in

An ultra-low power hybrid 2nd order feed forward ΔΣ modulator design for implantable medical devices

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a proposed ultra-low-power second order feedforward (FF) delta sigma (ΔΣ) modulator using two different integrators structures for implantable biomedical devices in the MICS band. In fact, the first active integrator is designed using a proposed optimized bulk driven telescopic operational transconductance amplifier while the second passive one is designed using a MOS Parametric amplifier. The ΔΣ modulator is designed for a signal bandwidth of 150 kHz with an oversampling ratio of 50. In fact, the proposed circuit is simulated using system-level model as well as device-level description for TSMC 0.18 μm CMOS technology. In this circuit, an input signal of −1.93 dBFS magnitude and 68.66 kHz frequency was sampled at a frequency of 15 MHz. Device-level simulations results indicate that the designed ΔΣ FF modulator achieves a signal to noise ratio (SNR) of 63 dB and a resolution of 10.18bits. It consumes only 3 µW under a ± 0.5 V supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Laouej, D., Daoud, H., & Loulou, M. (2020). A very low power delta sigma modulator using optimized bulk driven telescopic OTA for biomedical devices. IEEE I. Conference on Design and Test of integrated and micro & non-Systems (DTS).

  2. Khan, Y.J., & Yuce, R.M. (2010). Wireless body area network (WBAN) for medical applications. In New developments in Biomedical Engineering.

  3. Ravelomanantsoa, A. (2015). Deterministic approach to compressed acquisition and reconstruction of signals from distributed smart sensors. Thesis.

  4. Yao, L., Steyaert, M., & Sansen, W. M. C. (2006). Low-power low-voltage sigma-delta modulators in nanometer Cmos. Springer.

    Google Scholar 

  5. Archana, J., & Verma, V. (2015). Sigma-delta modulator design and analysis for audio application. International Journal Engineering Trends Technology (IJETT), 28, 21–26.

    Article  Google Scholar 

  6. Remya, T., Jayakrishnan, K.R., & Shahana, T.K. (2015). Design of 1-Bit DAC for Delta-Sigma Modulator. International Journal of Computer Applications, International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS), 19–22.

  7. Seyedhosseinzadeh, B. H., & Nabavi, A. (2014). A low-power parametric integrator for wideband switched-capacitor ΔΣ modulators. Analog Integrated Circuits Signal Processing, 78, 453–464.

    Article  Google Scholar 

  8. Vicente, J.D.C.M. (2013). Integrated circuit design of sigma-delta modulator for electric energy measurement applications. Thesis.

  9. Kwak, K.S., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15.6 Standard. In 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL) (pp. 1–6).

  10. Mahtab, A.M., & Ben Hamida, E. (2014). Surveying wearable human assistive technology for life and safety critical applications: standards, challenges and opportunities. Sensors (BasEl). 9153–9209.

  11. Bradley, P.B. (2011). Wireless medical implant technology recent advances and future developments. In Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 54–58.

  12. Haga, Y., Zare-Hoseini, H., Berkovi, L., & Kale, I. (2005). Design of a 0.8 volt fully differential CMOS OTA using the bulk-driven technique. In IEEE Intenational Symposuim on circuit and systems (ISCAS), pp. 220–223.

  13. Khateb, F., Biolek, D., Khatib, N., & Vávra, J. (2010). Utilizing the bulk-driven technique in analog circuit design. IEEE Symposium on Design and diagnostics of Electronic Circuits and Systems, pp. 16–19.

  14. Daoud, H., Laouej, D., Mallek, J., & Loulou, M. (2020). Soft computing methods for system dependability. Chapter 3: "A 0.22µw bulk-driven telescopic OTA optimization using PSO program for low power biomedical devices. IGI global (pp. 95–130). Soft computing methods for system dependability.

  15. Kulej, T., & Khateb, F. (2020). A compact 0.3-V class ab bulk-driven OTA. In IEEE Transactions On Very Large Scale Integration (VLSI) Systems, 28, pp. 224–232.

  16. Bhange, K., Zode, P., & Zode, P. (2015). Design of bulk driven miller operational transconductance amplifier. In International Conference on Industrial Instrumentation and Control (ICIC), pp. 1567–1570.

  17. Rosenfeld, J., Kozak, M., & Friedman, E. G. (2003). A 0.8 volt high performance OTA using bulk-driven MOSFETs for low power mixed-signal SOCs. In IEEE I. systems on chip conference, pp. 245–246.

  18. Rezaei, R., Ahmadpour, A., & Moghaddasi, M. N. (2013). A 0.4 V bulk-driven amplifier for low-power data converter applications. Circuits Systems, 4(01), 106.

    Article  Google Scholar 

  19. Hyoungdong, R., Hyuntae, L., Youngkil, C., & Jeongjin, R. (2010). A 0.8-V 816-nW delta–sigma modulator for low-power biomedical applications. Analog Integrated Circuits Signal Processing, 63, 101–106.

    Article  Google Scholar 

  20. Yannis, T., & Sanjeev, R. (2005). MOSFET parametric amplifier. U.S. Patent document. 11, pp. 141–175.

  21. Oliveira, J., Goes, J., Figueiredo, M., Santin, E., Fernandes, J., & Ferreira, J. (2010). An 8-bit 120-MS/s Interleaved CMOS Pipeline ADC based on MOS parametric amplification. IEEE Transactions Circuits Systems, 57, 105–109.

    Article  Google Scholar 

  22. Oliveira, J.P., Goes, J., Paulino, N., Fernandes, J., & Paisana, J. Incomplete modeling when using MOS capacitor changing from inversion into depletion: A comparator design as an example. Poster.

  23. Ranganathan, S., & Tsividis, Y. (2003). Discrete-time parametric amplification based on a three-terminal MOS varactor: analysis and experimental results. IEEE Journal Solid-State Circuits, 38, 2087–2093.

    Article  Google Scholar 

  24. Laouej, D., Daoud, H., & Loulou, M. (2019). An ultra-low power MOS parametric integrator-based feed forward ΔΣ modulator design for biomedical devices. IEEE I. Conference in Microeltronics (ICM) (pp. 288–291).

  25. Chae, Y., & Han, G. (2009). Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal Solid-State Circuits, 44, 458–472.

    Article  Google Scholar 

  26. Libin, Y., Michiel, S., & Willy, S. (2006). “Low-power low-voltage sigma-delta modulators in nanometer CMOS.” Springer.

    Google Scholar 

  27. Daoud, H. (2012). Study of the Potentials of New CMOS Technologies for the Design of OTAs: Applications to ADCs Design for New Generation Radio-Mobile Systems. Thesis.

  28. Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V Op Amps using standard digital CMOS technology. Circuits Systems II Analog Digital Signal Processing IEEE Transactions, 45, 769–780.

    Article  Google Scholar 

  29. Silveira, F., Flandre, D., & Jespers, P. G. A. (1996). A gm/ID based methodology for the design of CMOS analog circuits and application to the synthesis of a SOI micropower OTA. IEEE Journal Solid State Circuits, 31, 1314–1319.

    Article  Google Scholar 

  30. Daoud, H., Laouej, D., Ben Salem, S., & Loulou, M. (2016). Design of discret time feed-forward cascaded ΔΣ modulator for wireless communication systems. In 11th International Design & Test Symposium (IDT) (pp. 216–220).

  31. Lahiani, S., Daoud, H., Ben Salem, S., & Loulou, M. (2019). Low power CMOS variable gain amplifier design for a multistandard receiver WLAN/WIMAX/LTE. Analog Integrated Circuits Signal Processing, 101, 255–265.

    Article  Google Scholar 

  32. Garbaya, A., Kotti, M., Fakhfakh, M., & Tleto-Cuautle, E. (2020). Metamodelling techniques for the optimal design of low-noise amplifiers. Journal Electronics, 9, 787.

    Article  Google Scholar 

  33. Nakhaei, R., & Zahaby, M. (2013). Performance optimization of folded cascode OTA using an evolutionary algorithm. International Journal of Advanced Research in Computer Science and Software Engineering.

  34. Figueiredo, P. M., & Vital, J. C. (2004). The MOS capacitor amplifier. IEEE Transactions Circuits Systems, 51, 111–115.

    Article  Google Scholar 

  35. Collin, R. (1992). Foundations for microwave engineering. McGraw-Hill.

    Google Scholar 

  36. Seyedhosseinzadeh, B. H., & Nabavi, A. (2015). A MOS parametric integrator with improved linearity for SC Σ Δ modulators. IEEE Transactions Circuits Systems II Express Briefs, 62, 231–235.

    Article  Google Scholar 

  37. Jouida, N. (2010). Complex continuous-time bandpass ΣΔ modulator for multistandard reception. Thesis.

  38. Katyal, V., Geiger, R.L., & Chen, D.J. (2007). A new high precision low offset dynamic comparator for high resolution high speed ADCs. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (pp. 5–8).

  39. Cho, Y. K., Kim, M., & Kim, C. (2018). A low-power continuous-time delta-sigma modulator using a resonant single op-amp third-order loop filter. Circuits Systems II Express Briefs IEEE Transactions, 65, 854–858.

    Article  Google Scholar 

  40. Kumar, Y.B.N., Caracciolo, H., Bonizzoni, E., Patra, A., & Maloberti, F. (2013). A 1.96-mW, 2.6-MHz bandwidth discrete time quadrature band-pass Σ∆ modulator. Circuits and Systems: IEEE International Symposium on (ISCAS) (pp.1998–2001).

  41. Chen, C., Chen, L., Wang, X., & Zhang, F. (2018). A 66-dB SNDR, 8-µW analog front-end for ECG/EEG recording application. Circuits and Systems: IEEE International Symposuim on (ISCAS) (pp.1–4).

  42. Wang, L., & Theogarajan, L. (2011). An 18µW 79dB-DR 20KHz BW MASH ΔΣ Modulator utilizing self-biased amplifiers for biomedical applications. In IEEE Custom integrated circuits conference (CICC) (pp. 1–4).

  43. Sohel, A., & Naaz, M. (2019). A 1.8V 204.8-µW 12-bit fourth order active passive ∑∆ modulator for biomedical applications. Devices for integrated circuit (DevIC) (pp.124–127).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalila Laouej.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laouej, D., Daoud, H. & Loulou, M. An ultra-low power hybrid 2nd order feed forward ΔΣ modulator design for implantable medical devices. Analog Integr Circ Sig Process 108, 277–289 (2021). https://doi.org/10.1007/s10470-021-01894-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01894-z

Keywords

Navigation