Skip to main content
Log in

Morita duality emerging from quasi-abelian categories

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

It is shown that a general concept of Morita duality between abelian categories with no generating hypothesis for reflexive objects is completely described by a special class of quasi-abelian categories, called ample Morita categories. The duality takes place between a pair of intrinsic abelian full subcategories which exist for any quasi-abelian category. Morita categories, being slightly more general, admit a natural embedding into ample ones. An existence criterion for a duality of a Morita category is proved. It generalizes Pontrjagin duality for the category of locally compact abelian groups which is shown to be a non-ample non-classical Morita category. More examples of non-classical Morita categories are obtained from dual systems of topological vector spaces satisfying the Hahn-Banach property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, New York - Heidelberg - Berlin (1974)

    Book  MATH  Google Scholar 

  2. Angeleri Hügel, L., Coelho, F.U.: Infinitely generated tilting modules of finite projective dimension. Forum Math. 13(2), 239–250 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Ánh, P. N., Menini, C.: Morita duality for rings with local units. J. Algebra 164(3), 632–641 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ánh, P.N., Wiegandt, R.: Morita duality for Grothendieck categories. J. Algebra 168(1), 273–293 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anzai, H., Kakutani, S.: Bohr compactifications of a locally compact Abelian group. I Proc. Imp. Acad. Tokyo 19, 476–480 (1943)

    MathSciNet  MATH  Google Scholar 

  6. Auslander, M.: Representation dimension of Artin algebras Queen Mary College Mathematics Notes (1971)

  7. Azumaya, G.: A duality theory for injective modules, (Theory of quasi-Frobenius modules). Amer. J. Math. 81, 249–278 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuang, J., Lazarev, A., Mannan, W.: Koszul-Morita duality. J. Noncommut. Geom. 10(4), 1541–1557 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colby, R.R., Fuller, K.R.: Exactness of the double dual and Morita duality for Grothendieck categories. J. Algebra 82(2), 546–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colby, R.R., Fuller, K.R.: QF-3 rings and Morita duality. Tsukuba J. Math. 8(1), 183–188 (1984)

    MathSciNet  MATH  Google Scholar 

  11. Colpi, R., Fuller, K.R.: Cotilting modules and bimodules. Pacific J. Math. 192(2), 275–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colby, R.R., Fuller, K.R.: Equivalence and Duality for Module Categories with Tilting and Cotilting for Rings Cambridge Tracts in Mathematics, vol. 161. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Curtis, C.W.: On commuting rings of endomorphisms. Canadian J. Math. 8, 271–292 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  14. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras Pure and Applied Mathematics, vol. XI. Interscience Publishers, New York-London (1962)

    Google Scholar 

  15. Dieudonné, J.: La dualité dans les espaces vectoriels topologiques. Ann. Sci. É,cole Norm. Sup. 59, 107–139 (1942)

    Article  MATH  Google Scholar 

  16. Enache, P., Năstăsescu, C., Torrecillas, B.: Topological linear compactness for Grothendieck categories. Theorem of Tychonoff. Applications to coalgebras. Publ. Mat. 50(1), 57–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Freyd, P.J., Kelly, G.M.: Categories of continuous functors. I J. Pure Appl. Algebra 2, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freyd, P.J., Kelly, G.M.: erratum: “Categories of continuous functors, I”. J. Pure Appl. Algebra 4, 121 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gómez Pardo, J.L., Guil Asensio, P.A.: Linear compactness and Morita duality for Grothendieck categories. J. Algebra 148(1), 53–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gómez Pardo, J.L., Guil Asensio, P.A.: Morita duality for Grothendieck categories. Publ. Mat. 36 (1992)(2A), 625–635 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Gómez-Torrecillas, J., Năstăsescu, C., Torrecillas, B.: Localization in coalgebras, Applications to finiteness conditions. J. Algebra Appl. 6(2), 233–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koike, K., Morita duality and ring extensions, J. Algebra Appl. 12 (2013), no. 2, 1250160, 23 pp

  23. Mac Lane, S.: Duality for groups. Bull. Amer. Math. Soc. 56, 485–516 (1950)

    Article  MathSciNet  Google Scholar 

  24. Mac Lane, S.: Categories for the working mathematician new york - heidelberg - berlin (1971)

  25. Magajna, B.: Injective cogenerators among operator bimodules. Houston J. Math. 33(4), 1091–1115 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Mantese, F., Tonolo, A.: Natural dualities. A.gebr. Represent. Theory 7(1), 43–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6, 83–142 (1958)

    MathSciNet  MATH  Google Scholar 

  28. Morita, K., Tachikawa, H.: Character modules, submodules of a free module, and quasi-Frobenius rings. Math. Z. 65, 414–428 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller, B.J.: On Morita duality. Canadian J. Math. 21, 1338–1347 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Müller, B.J.: Linear compactness and Morita duality. J. Algebra 16, 60–66 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  31. Müller, B.J.: Duality theory for linearly topologized modules. Math. Z. 119, 63–74 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Negrepontis-Pelletier, J.W.: Duality in analysis from the point of view of triples. J. Algebra 19, 228–253 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osofsky, B.L.: A generalization of quasi-Frobenius rings. J. Algebra 4, 373–387 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ohtake, K.: Morita duality for Grothendieck categories and its application. J. Algebra 174(3), 801–822 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Popescu, N.: Abelian categories with applications to rings and modules london - new york (1973)

  36. Quillen, D.: Higher Algebraic K-theory, I. In: Algebraic K-Theory, I: Higher K-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Pp. 85-147, Lecture Notes in Math, p 341. Springer, Berlin (1973)

  37. Robertson, L., Schreiber, B.M.: The additive structure of integer groups and p-adic number fields. Proc. Amer. Math. Soc. 19, 1453–1456 (1968)

    MathSciNet  MATH  Google Scholar 

  38. Rudin, W.: Fourier analysis on groups, Reprint of the 1962 original, Wiley Classics Library, John Wiley & Sons, Inc. New York (1990)

  39. Rump, W.: Almost abelian categories. Cahiers de topologie et gé,ométrie différentielle catégoriques XLII, pp. 163–225 (2001)

  40. Rump, W.: The abelian closure of an exact category. J. Pure Appl. Algebra 224(10), 106395 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schaefer, H.H.: Topological Vector Spaces Graduate Texts in Mathematics, vol. 3. Springer-Verlag, New York-Berlin (1971)

    Book  Google Scholar 

  42. Schneiders, J.-P. : Quasi-abelian categories and sheaves, Mém. Soc. Math. France 1999, no. 76

  43. Serre, J.-P.: Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. 58, 258–294 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tachikawa, H.: Quasi-Frobenius Rings and Generalizations, QF-3 and QF-1 Rings, Notes by Claus Michael Ringel Lecture 5 in Mathematics, vol. 351. Springer-Verlag, Berlin-New York (1973)

    Book  MATH  Google Scholar 

  45. Tonolo, A.: Generalizing Morita duality: a homological approach. J. Algebra 232(1), 282–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Watts, C.E.: Intrinsic Characterizations of some Additive Functors. Proc. Amer. Math Soc. 11, 5–8 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  47. Weyl, H.: Commutator algebra of a finite group of collineations. Duke Math. J. 3(2), 200–212 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  48. Weyl, H.: The classical groups, their invariants and representations, princeton university press, princeton N.J. (1939)

  49. Wisbauer, R.: Cotilting Objects and Dualities, Representations of Algebras (São Paulo, 1999), 215-233, Lecture Notes in Pure and Appl Math., vol. 224. Dekker, New York (2002)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to an anonymous referee for spotting typos and suggesting a better terminology with respect to Colby-Fuller duality and its covariant generalization in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Rump.

Additional information

Presented by: Kenneth Goodearl

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to B. V. M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rump, W. Morita duality emerging from quasi-abelian categories. Algebr Represent Theor 25, 1309–1322 (2022). https://doi.org/10.1007/s10468-021-10068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-021-10068-4

Keywords

Mathematics Subject Classification (2010)

Navigation