Skip to main content
Log in

An Analysis of Piezomagnetic-Piezoelectric Semiconductor Unimorphs in Coupled Bending and Extension under a Transverse Magnetic Field

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

We study the response of a composite beam (unimorph) with a piezomagnetic layer and a piezoelectric semiconductor layer under a transverse magnetic field. A one-dimensional model for coupled bending and extension of the beam is derived from the three-dimensional theory. A simple and analytical solution of the model is obtained, showing that various electromechanical fields develop in the beam through piezomagnetic and piezoelectric couplings as well as semiconduction. In particular, the mobile charges in the semiconductor layer redistribute themselves under the magnetic field. A coupling coefficient is defined to describe the strength of this magneto-semiconduction coupling. The effects of physical and geometric parameters on the fields and the coupling coefficient are examined. The results are fundamental to piezotronics when magnetic effects are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hickernell FS. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Trans Ultrason FERR. 2005;52(5):737–45.

    Article  Google Scholar 

  2. Wang ZL, Wu WZ, Falconi C. Piezotronics and piezophototronics with third generation semiconductors. MRS Bull. 2018;43(12):922–7.

    Article  Google Scholar 

  3. Zhang Y, Leng YS, Willatzen M, et al. Theory of piezotronics and piezophototronics. MRS Bull. 2018;43(12):928–35.

    Article  Google Scholar 

  4. Hu WG, Kalantar-Zadeh K, Gupta K, et al. Piezotronic materials and large-scale piezotronics array devices. MRS Bull. 2018;43(12):936–40.

    Article  Google Scholar 

  5. Frömling T, Yu RM, Mintken M, et al. Piezotronic sensors. MRS Bull. 2018;43(12):941–5.

    Article  Google Scholar 

  6. Wang XD, Rohrer GS, Li HX. Piezotronic modulations in electro- and photochemical catalysis. MRS Bull. 2018;43(12):946–51.

    Article  Google Scholar 

  7. Bao RR, Hu YF, Yang Q, et al. Piezophototronic effect on optoelectronic nanodevices. MRS Bull. 2018;43(12):952–8.

    Article  Google Scholar 

  8. Gao PX, Song JH, Liu J, et al. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv Mater. 2007;19(1):67–72.

    Article  Google Scholar 

  9. Romano G, Mantini G, Garlo AD, et al. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology. 2011;22(46):465401.

    Article  Google Scholar 

  10. Liu YD, Wahyudin ETN, He JH, et al. Piezotronics and piezo-phototronics in two-dimensional materials. MRS Bull. 2018;43(12):959–64.

    Article  Google Scholar 

  11. Cui NY, Wu WW, Zhao Y, et al. Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 2012;12(7):3701–5.

    Article  Google Scholar 

  12. Huang LB, Bai GX, Wong MC, et al. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv Mater. 2016;28(14):2744–51.

    Article  Google Scholar 

  13. Wong MC, Chen L, Tsang MK, et al. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv Mater. 2015;27(30):4488–95.

    Article  Google Scholar 

  14. Peng MZ, Zhang Y, Liu YD, et al. Magnetic-mechanical-electrical-optical coupling effects in GaN-based led/rare-earth terfenol-D structures. Adv Mater. 2014;26(39):6767–72.

    Article  Google Scholar 

  15. Liu YD, Guo JM, Yu AF, et al. Magnetic-induced-piezopotential gated MoS\(_{2}\) field-effect transistor at room temperature. Adv Mater. 2018;30(8):1704524.

    Article  Google Scholar 

  16. Piotrowski C, Bendson SA, Loeding NW, et al. Integrated magnetostrictive-piezoelectric metal oxde semiconductor magnetic payback head. U.S. Patent 4,520,413 (1985).

  17. Cheng RR, Zhang CL, Zhang CZ, et al. Magnetically controllable piezotronic responses in a composite semiconductor fiber with multiferroic coupling effects. Phys Status Solidi A. 2020;217(2):1900621.

    Article  Google Scholar 

  18. Wang GL, Liu JX, Feng WJ, et al. Magnetically induced carrier distribution in a composite rod of piezoelectric semiconductors and piezomagnetics. Materials. 2020;13(14):3115.

    Article  Google Scholar 

  19. Liang C, Zhang CL, Chen WQ, et al. Electrical response of a multiferroic composite semiconductor fiber under a local magnetic field. Acta Mech Solida Sinica. 2020;33:663–73.

    Article  Google Scholar 

  20. Kong DJ, Cheng RR, Zhang CL, et al. Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. J Appl Phys. 2020;128(6):064503.

    Article  Google Scholar 

  21. Wang GL, Liu JX, Nie GQ, et al. Effects of magnetic fields on mobile charges in bending of beams with piezoelectric semiconductor and piezomagnetic layers. Arch Appl Mech. 2020;under review.

  22. Dong SX, Bouchilloux P, Du XH, et al. Ring type uni/bimorph piezoelectric actuators. J Intel Mat Syst Struct. 2002;12(9):613–6.

    Article  Google Scholar 

  23. Gao XT, Shih WH, Shih WY. Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios. Smart Mater Struct. 2009;18(12):125018.

    Article  Google Scholar 

  24. Pierret RF. Semiconductor device fundamentals. New Jersey: Addison-Wesley; 1996.

    Google Scholar 

  25. Yang JS. Analysis of piezoelectric semiconductor structures. Berlin: Springer Nature Switzerland AG; 2020.

    Book  Google Scholar 

  26. Zheng JY, Zhou YL, Zhang YM, et al. C-V characteristics of piezotronic metal-insulator-semiconductor transistor. Sci Bull. 2020;65(2):161–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12072167 and 11972199), the special research funding from the Marine Biotechnology and Marine Engineering Discipline Group in Ningbo University, and the K. C. Wong Magana Fund through Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianke Du or Jiashi Yang.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Du, J., Wang, J. et al. An Analysis of Piezomagnetic-Piezoelectric Semiconductor Unimorphs in Coupled Bending and Extension under a Transverse Magnetic Field. Acta Mech. Solida Sin. 34, 743–753 (2021). https://doi.org/10.1007/s10338-021-00235-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00235-x

Keywords

Navigation