Skip to main content
Log in

Bacteriocin-Like Inhibitory Substance (BLIS) Activity of Enterococcus faecium DB1 Against Biofilm Formation by Clostridium perfringens

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The antibiofilm effect of bacteriocin-like inhibitory substance (BLIS) from Enterococcus faecium DB1 against Clostridium perfringens was investigated in the present study. BLIS of E. faecium DB1 significantly reduced biofilm formation by C. perfringens in a dose-dependent manner for 24 and 48 h. In particular, treatment with BLIS of E. faecium DB1 significantly inhibited biofilm formation by C. perfringens on chicken meat and stainless steel coupon surfaces. Moreover, BLIS of E. faecium DB1 decreased the viability of C. perfringens biofilm and planktonic cells, indicating that the reduction of biofilm formation by C. perfringens might be achieved by killing the bacterial cells. Taken together, the present results suggest that BLIS of E. faecium DB1 can be a promising antibiofilm agent to eradicate C. perfringens.  

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. García S, Heredia N (2011) Clostridium perfringens: a dynamic foodborne pathogen. Food Bioproc Tech 4:624–630. https://doi.org/10.1007/s11947-009-0182-2

    Article  Google Scholar 

  2. Mora ZV, Macias-Rodriguez ME, Arratia-Quijada J, Gonzalez-Torres YS, Nuno K, Villarruel-Lopez A (2020) Clostridium perfringens as foodborne pathogen in broiler production: pathophysiology and potential strategies for controlling necrotic enteritis. Animals (Basel) 10:E1718. https://doi.org/10.3390/ani10091718

    Article  Google Scholar 

  3. Charlebois A, Jacques M, Archambault M (2014) Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front Microbiol 5:183. https://doi.org/10.3389/fmicb.2014.00183

    Article  PubMed  PubMed Central  Google Scholar 

  4. Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A (2014) Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 9:e87757. https://doi.org/10.1371/journal.pone.0087757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13(Suppl 1):S3. https://doi.org/10.1186/1475-2859-13-S1-S3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:1255. https://doi.org/10.3390/molecules22081255

    Article  CAS  PubMed Central  Google Scholar 

  7. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. https://doi.org/10.1038/nrmicro1273

    Article  CAS  PubMed  Google Scholar 

  8. Lau CS, Chamberlain RS (2016) Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 9:27–37. https://doi.org/10.2147/IJGM.S98280

    Article  PubMed  PubMed Central  Google Scholar 

  9. Molina MA, Diaz AM, Hesse C, Ginter W, Gentilini MV, Nunez GG, Canellada AM, Sparwasser T, Berod L, Castro MS, Manghi MA (2015) Immunostimulatory effects triggered by Enterococcus faecalis CECT7121 probiotic strain involve activation of dendritic cells and interferon-gamma production. PLoS One 10:e0127262. https://doi.org/10.1371/journal.pone.0127262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franz CM, Huch M, Abriouel H, Holzapfel W, Galvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  11. Abanoz HS, Kunduhoglu B (2018) Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Korean J Food Sci Anim Resour 38:1064–1079. https://doi.org/10.5851/kosfa.2018.e40

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim N-N, Kim WJ, Kang S-S (2019) Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control 98:274–280. https://doi.org/10.1016/j.foodcont.2018.11.004

    Article  CAS  Google Scholar 

  13. Seo H-J, Kang S-S (2020) Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control 117:107361. https://doi.org/10.1016/j.foodcont.2020.107361

    Article  CAS  Google Scholar 

  14. Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57:5572–5579. https://doi.org/10.1128/AAC.00888-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camargo AC, de Paula OA, Todorov SD, Nero LA (2016) In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl Biochem Biotechnol 178:1239–1251. https://doi.org/10.1007/s12010-015-1941-3

    Article  CAS  PubMed  Google Scholar 

  16. Brynestad S, Granum PE (2002) Clostridium perfringens and foodborne infections. Int J Food Microbiol 74:195–202. https://doi.org/10.1016/s0168-1605(01)00680-8

    Article  PubMed  Google Scholar 

  17. Lee H-J, Kim WJ (2010) Isolation and characterization of anti-listerial and amylase sensitive enterocin producing Enterococcus faecium DB1 from gajami-sikhae, a fermented flat fish in Korea. Food Sci Biotechnol 19:373–381. https://doi.org/10.1007/s10068-010-0053-7

    Article  CAS  Google Scholar 

  18. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20. https://doi.org/10.1016/s0168-1605(01)00560-8

    Article  CAS  PubMed  Google Scholar 

  19. Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167:179–184. https://doi.org/10.1111/j.1574-6968.1998.tb13225.x

    Article  CAS  PubMed  Google Scholar 

  20. Saa Ibusquiza P, Herrera JJ, Cabo ML (2011) Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol 28:418–425. https://doi.org/10.1016/j.fm.2010.09.014

    Article  CAS  PubMed  Google Scholar 

  21. Nes IF, Diep DB, Holo H (2007) Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189:1189–1198. https://doi.org/10.1128/JB.01254-06

    Article  CAS  PubMed  Google Scholar 

  22. Rocha KR, Perini HF, de Souza CM, Schueler J, Tosoni NF, Furlaneto MC, Furlaneto-Maia L (2019) Inhibitory effect of bacteriocins from enterococci on developing and preformed biofilms of Listeria monocytogenes, Listeria ivanovii and Listeria innocua. World J Microbiol Biotechnol 35:96. https://doi.org/10.1007/s11274-019-2675-0

    Article  CAS  PubMed  Google Scholar 

  23. Varga JJ, Therit B, Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951. https://doi.org/10.1128/IAI.00692-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA (2014) Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377. https://doi.org/10.2217/fmb.13.168

    Article  CAS  PubMed  Google Scholar 

  25. Lee DH, Kim BS, Kang SS (2020) Bacteriocin of Pediococcus acidilactici HW01 inhibits biofilm formation and virulence factor production by Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 12:73–81. https://doi.org/10.1007/s12602-019-09623-9

    Article  CAS  PubMed  Google Scholar 

  26. Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:287. https://doi.org/10.3389/fmicb.2012.00287

    Article  PubMed  PubMed Central  Google Scholar 

  27. Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W (2016) Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci 120:118–132. https://doi.org/10.1016/j.meatsci.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  28. Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241. https://doi.org/10.3389/fmicb.2014.00241

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1D1A1B03028730 and NRF-2020R1A2C1010010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Seong Kang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.S., Park, S.W., Lee, H.B. et al. Bacteriocin-Like Inhibitory Substance (BLIS) Activity of Enterococcus faecium DB1 Against Biofilm Formation by Clostridium perfringens. Probiotics & Antimicro. Prot. 13, 1452–1457 (2021). https://doi.org/10.1007/s12602-021-09813-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09813-4

Keywords

Navigation