Skip to main content
Log in

In-situ Strain Field Measurement and Mechano-electro-chemical Analysis of Graphite Electrodes Via Fluorescence Digital Image Correlation

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Mechano-electro-chemical coupling during the ion diffusion process is a core factor to determine the electrochemical performance of electrodes. However, relationship between the mechanics and the electrochemistry has not been clarified by experiments.

Objective

In this work, we conduct an in situ, visual, comprehensive characterization of strain field and Li concentration distribution to further explore the mechano-electro-chemical relationship.

Methods

The digital image correlation characterized by fluorescent speckle and active optical imaging is developed. Combined with electrochromic-based Li concentration detection, the spatiotemporal evolution of in-plane strain and Li concentration of a graphite electrode during the lithiation and delithiation processes are measured and displayed visually via a dual optical path acquisition system.

Results

The visual results show that in-plane strain and Li concentration possess a spatially non-uniform gradient distribution along the radial direction (i.e., diffusion path) with large values outside and small values inside, and that both present obvious temporal segmentation. And mechano-electro-chemical coupling analysis reveals that the in-plane strain is not always linearly related to the concentration and infers that a high strain limits the diffusion and lithiation. The strain–concentration evolution exhibits obvious asymmetric differences between lithiation and delithiation, wherein three equations are fitted to approximately represent the evolution process between in-plane strain and concentration during the lithiation and delithiation processes

Conclusions

This work overcomes the difficulties of fine strain measurements and collaborative concentration characterization during the electrochemical process, and provides an effective experimental method and data support for further exploration of mechano-electro-chemical coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xia S, Guduru P, Sodano H (2018) Mechanics of Energy Materials. Exp Mech 58(4):533–535. https://doi.org/10.1007/s11340-018-0386-3

    Article  Google Scholar 

  2. Palacin MR, de Guibert A (2016) Why do batteries fail? Science 351(6273):1253292. https://doi.org/10.1126/science.1253292

    Article  Google Scholar 

  3. Liang H, Zhang X, Yang L, Wu Y, Chen H, Song W, Fang D (2019) Electrochemomechanical coupled behaviors of deformation and failure in electrode materials for lithium-ion batteries. Sci China: Technol Sci 62(8):1277–1296. https://doi.org/10.1007/s11431-018-9485-6

    Article  Google Scholar 

  4. Liu Z, Kang Y, Song H, Zhang Q, Xie H (2020) Experimental investigation of electrode cycle performance and electrochemical kinetics performance under stress loading. Chin Phys B. https://doi.org/10.1088/1674-1056/abb30e

    Article  Google Scholar 

  5. Zhu T, Fang X, Wang B, Shen S, Feng X (2019) Challenges and opportunities in chemomechanics of materials: A perspective. Sci China: Technol Sci 62(8):1385–1387. https://doi.org/10.1007/s11431-018-9516-2

    Article  Google Scholar 

  6. Burebi Y, Jia Z, Qu S (2019) A chemo-mechanical model for fully-coupled lithiation reaction and stress generation in viscoplastic lithiated silicon. Sci China: Technol Sci 62(8):1365–1374. https://doi.org/10.1007/s11431-018-9499-x

    Article  Google Scholar 

  7. Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B-X (2019) A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources 413:259–283. https://doi.org/10.1016/j.jpowsour.2018.12.011

    Article  Google Scholar 

  8. Gao X, Lu W, Xu J (2020) Modeling framework for multiphysics-multiscale behavior of Si–C composite anode. J Power Sources 449:227501. https://doi.org/10.1016/j.jpowsour.2019.227501

    Article  Google Scholar 

  9. Hofmann T, Westhoff D, Feinauer J, Andrä H, Zausch J, Schmidt V, Müller R (2020) Electro-chemo-mechanical simulation for lithium ion batteries across the scales. Int J Solids Struct 184:24–39. https://doi.org/10.1016/j.ijsolstr.2019.05.002

    Article  Google Scholar 

  10. Cheng Y-T, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190(2):453–460. https://doi.org/10.1016/j.jpowsour.2009.01.021

    Article  Google Scholar 

  11. Deshpande R, Cheng Y-T, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088. https://doi.org/10.1016/j.jpowsour.2010.02.021

    Article  Google Scholar 

  12. Suo Y, Yang F (2019) One-dimensional analysis of the coupling between diffusion and deformation in a bilayer electrode. Acta Mech Sin 35(3):589–599. https://doi.org/10.1007/s10409-018-0817-5

    Article  MathSciNet  Google Scholar 

  13. Xu R, Yang Y, Yin F, Liu P, Cloetens P, Liu Y, Lin F, Zhao K (2019) Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling. J Mech Phys Solids 129:160–183. https://doi.org/10.1016/j.jmps.2019.05.003

    Article  MathSciNet  Google Scholar 

  14. Ji X, Wang Y, Zhang J (2018) Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study. Phys B Condens Matter 539:66–71. https://doi.org/10.1016/j.physb.2018.03.046

    Article  Google Scholar 

  15. Zhang Q, Tang C, Zhu W, Cheng C (2018) Strain-Enhanced Li Storage and Diffusion on the Graphyne as the Anode Material in the Li-Ion Battery. J Phys Chem C 122(40):22838–22848. https://doi.org/10.1021/acs.jpcc.8b05272

    Article  Google Scholar 

  16. Zhang X-y, Chen H-S, Fang D (2020) Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries. Int J Mech Sci 169:105323. https://doi.org/10.1016/j.ijmecsci.2019.105323

    Article  Google Scholar 

  17. Xie H, Kang Y, Song H, Shi B, Wang J (2019) Modified Stoney Model and Optimization of Electrode Structure Based on Stress Characteristics. Energy Technol 7(2):333–345. https://doi.org/10.1002/ente.201800380

    Article  Google Scholar 

  18. Zhang K, Li Y, Wang F, Zheng BL, Yang FQ (2019) Stress effect on self-limiting lithiation in silicon-nanowire electrode. Appl Phys Express 12(4). https://doi.org/10.7567/1882-0786/Ab0ce8

  19. Jin C, Li H, Song Y, Lu B, Soh AK, Zhang J (2019) On stress-induced voltage hysteresis in lithium ion batteries: Impacts of surface effects and interparticle compression. Sci China: Technol Sci 62(8):1357–1364. https://doi.org/10.1007/s11431-018-9491-6

    Article  Google Scholar 

  20. Pan B, Wu D, Xia Y (2012) An active imaging digital image correlation method for deformation measurement insensitive to ambient light. Opt Laser Technol 44(1):204–209. https://doi.org/10.1016/j.optlastec.2011.06.019

    Article  Google Scholar 

  21. Song H, Liu C, Zhang H, Yang X, Leen SB (2021) Experimental investigation on damage evolution in pre-corroded aluminum alloy 7075–T7651 under fatigue loading. Mater Sci Eng A 799:140206. https://doi.org/10.1016/j.msea.2020.140206

    Article  Google Scholar 

  22. Dong B, Li C, Pan B (2021) Fluorescent 2D Digital image correlation with built-in coaxial Illumination for deformation measurement in space-constrained scenarios. Exp Mech. https://doi.org/10.1007/s11340-020-00688-0

    Article  Google Scholar 

  23. Zhang X, Ye X, Li X (2016) Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe. Measurement Sci Technol 27(8):085006. https://doi.org/10.1088/0957-0233/27/8/085006

    Article  Google Scholar 

  24. Wu L, Cheng T, Zhang Q-C (2012) A bi-material microcantilever temperature sensor based on optical readout. Measurement 45(7):1801–1806. https://doi.org/10.1016/j.measurement.2012.04.003

    Article  Google Scholar 

  25. Qiu W, Cheng C-L, Liang R-R, Zhao C-W, Lei Z-K, Zhao Y-C, Ma L-L, Xu J, Fang H-J, Kang Y-L (2016) Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy. Acta Mech Sin 32(5):805–812. https://doi.org/10.1007/s10409-016-0591-1

    Article  Google Scholar 

  26. Wang M, Hu X-F, Wu X-P (2006) Internal microstructure evolution of aluminum foams under compression. Mater Res Bull 41(10):1949–1958. https://doi.org/10.1016/j.materresbull.2006.03.002

    Article  Google Scholar 

  27. Jangid MK, Mukhopadhyay A (2019) Real-time monitoring of stress development during electrochemical cycling of electrode materials for Li-ion batteries: overview and perspectives. J Mater Chem A 7(41):23679–23726. https://doi.org/10.1039/c9ta06474e

    Article  Google Scholar 

  28. Xu Z-L, Liu X, Luo Y, Zhou L, Kim J-K (2017) Nanosilicon anodes for high performance rechargeable batteries. Proc Mater Sci 90:1–44. https://doi.org/10.1016/j.pmatsci.2017.07.003

    Article  Google Scholar 

  29. Feng X, Yang L, Zhang M, Tao R, Han Y, Wen J, Wang P, Song W, Ai S, Chen H (2019) Failure mechanics inner lithium ion batteries: in-situ multi-field experimental methods. Energy Storage Sci Technol 06:1062–1075 (In Chinese). https://doi.org/10.19799/j.cnki.2095-4239.2019.0205

  30. Rakshit S, Tripuraneni R, Nadimpalli SPV (2018) Real-Time Stress Measurement in SiO2 Thin Films during Electrochemical Lithiation/Delithiation Cycling. Exp Mech 58(4):537–547. https://doi.org/10.1007/s11340-017-0371-2

    Article  Google Scholar 

  31. Li D, Wang Y, Hu J, Lu B, Dang D, Zhang J, Cheng Y-T (2018) Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J Power Sources 387:9–15. https://doi.org/10.1016/j.jpowsour.2018.03.048

    Article  Google Scholar 

  32. Mukhopadhyay A, Tokranov A, Xiao X, Sheldon BW (2012) Stress development due to surface processes in graphite electrodes for Li-ion batteries: A first report. Electrochim Acta 66:28–37. https://doi.org/10.1016/j.electacta.2012.01.058

    Article  Google Scholar 

  33. Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Proc Mater Sci 63:58–116. https://doi.org/10.1016/j.pmatsci.2014.02.001

    Article  Google Scholar 

  34. Sethuraman VA, Nguyen A, Chon MJ, Nadimpalli SPV, Wang H, Abraham DP, Bower AF, Shenoy VB, Guduru PR (2013) Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation. J Electrochem Soc 160(4):A739–A746. https://doi.org/10.1149/2.021306jes

    Article  Google Scholar 

  35. Xie HM, Kang YL, Song HB, Zhang Q (2019) Real-time measurements and experimental analysis of material softening and total stresses of Si-composite electrode. J Power Sources 424:100–107. https://doi.org/10.1016/j.jpowsour.2019.03.107

    Article  Google Scholar 

  36. Xie HM, Zhang Q, Song HB, Shi BQ, Kang YL (2017) Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechano-electro-chemical process. J Power Sources 342:896–903. https://doi.org/10.1016/j.jpowsour.2017.01.017

    Article  Google Scholar 

  37. Xie HM, Kang YL, Song HB, Guo JG, Zhang Q (2020) In situ method for stress measurements in film-substrate electrodes during electrochemical processes: key role of softening and stiffening. Acta Mech Sin. https://doi.org/10.1007/s10409-020-00995-8

    Article  Google Scholar 

  38. Çapraz ÖÖ, Rajput S, White S, Sottos NR (2018) Strain Evolution in Lithium Manganese Oxide Electrodes. Exp Mech 58(4):561–571. https://doi.org/10.1007/s11340-018-0381-8

    Article  Google Scholar 

  39. Chen J, Thapa AK, Berfield TA (2014) In-situ characterization of strain in lithium battery working electrodes. J Power Sources 271:406–413. https://doi.org/10.1016/j.jpowsour.2014.08.035

    Article  Google Scholar 

  40. Jones EMC, Silberstein MN, White SR, Sottos NR (2014) In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling. Exp Mech 54(6):971–985. https://doi.org/10.1007/s11340-014-9873-3

    Article  Google Scholar 

  41. Jones EMC, Çapraz ÖÖ, White SR, Sottos NR (2016) Reversible and Irreversible Deformation Mechanisms of Composite Graphite Electrodes in Lithium-Ion Batteries. J Electrochem Soc 163(9):A1965–A1974. https://doi.org/10.1149/2.0751609jes

    Article  Google Scholar 

  42. Mao W, Wang Z, Li C, Zhu X, Dai C, Yang H, Chen X, Fang D (2018) In-situ characterizations of chemo-mechanical behavior of free-standing vanadium pentoxide cathode for lithium-ion batteries during discharge-charge cycling using digital image correlation. J Power Sources 402:272–280. https://doi.org/10.1016/j.jpowsour.2018.09.047

    Article  Google Scholar 

  43. Song H, Xie H, Xu C, Kang Y, Li C, Zhang Q (2019) In Situ Measurement of Strain Evolution in the Graphene Electrode during Electrochemical Lithiation and Delithiation. J Phys Chem C 123(31):18861–18869. https://doi.org/10.1021/acs.jpcc.9b05284

    Article  Google Scholar 

  44. Xie H, Song H, Guo J-g, Kang Y, Yang W, Zhang Q (2019) In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process. Carbon 144:342–350. https://doi.org/10.1016/j.carbon.2018.12.033

    Article  Google Scholar 

  45. Pondick JV, Yazdani S, Yarali M, Reed SN, Hynek DJ, Cha JJ (2021) The Effect of Mechanical Strain on Lithium Staging in Graphene. Adv Electron Mater 7(3):2000981. https://doi.org/10.1002/aelm.202000981

    Article  Google Scholar 

  46. Imashuku S, Taguchi H, Kawamata T, Fujieda S, Kashiwakura S, Suzuki S, Wagatsuma K (2018) Quantitative lithium mapping of lithium-ion battery cathode using laser-induced breakdown spectroscopy. J Power Sources 399:186–191. https://doi.org/10.1016/j.jpowsour.2018.07.088

    Article  Google Scholar 

  47. Thomas-Alyea KE, Jung C, Smith RB, Bazant MZ (2017) In Situ Observation and Mathematical Modeling of Lithium Distribution within Graphite. J Electrochem Soc 164(11):E3063–E3072. https://doi.org/10.1149/2.0061711jes

    Article  Google Scholar 

  48. Yang W, Xie H, Shi B, Song H, Qiu W, Zhang Q (2019) In-situ experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process. J Power Sources 423:174–182. https://doi.org/10.1016/j.jpowsour.2019.03.076

    Article  Google Scholar 

  49. Shi B, Kang Y, Xie H, Song H, Zhang Q (2018) In situ measurement and experimental analysis of lithium mass transport in graphite electrodes. Electrochim Acta 284:142–148. https://doi.org/10.1016/j.electacta.2018.07.079

    Article  Google Scholar 

  50. Chen H-S, Han Y, Yang L, Bao Y-H, Chen J, Li X, Pang J, Song W-L, Fang D-N (2019) A method for analyzing two-dimensional lithium ion concentration in the nano silicon films. Appl Phys Lett 115(26):264102. https://doi.org/10.1063/1.5132578

    Article  Google Scholar 

  51. Dong YL, Pan B (2017) A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation. Exp Mech 57:1161–1181. https://doi.org/10.1007/s11340-017-0283-1

    Article  Google Scholar 

  52. Shao X, Zhu F, Su Z, Dai X, Chen Z, He X (2018) Experimental investigation of strain errors in stereo-digital image correlation due to camera calibration. Opt Eng 57(3):034102. https://doi.org/10.1117/1.OE.57.3.034102

    Article  Google Scholar 

  53. Zhang X, Su Y, Gao ZR, Xu T, Ding XH, Yu QF, Zhang QC (2018) High-accuracy three-dimensional shape measurement of micro solder paste and printed circuits based on digital image correlation. Opt Eng 57(5):1. https://doi.org/10.1117/1.Oe.55.5.054101

    Article  Google Scholar 

  54. Xing T, Zhu H, Wang L, Liu G, Ma S (2020) High accuracy measurement of heterogeneous deformation field using spatial-temporal subset digital image correlation. Measurement 156:107605. https://doi.org/10.1016/j.measurement.2020.107605

    Article  Google Scholar 

  55. Zhang W, Cai TH, Sheldon BW (2018) The Impact of Initial SEI Formation Conditions on Strain‐Induced Capacity Losses in Silicon Electrodes. Adv Energy Mater 1803066. https://doi.org/10.1002/aenm.201803066

  56. Ghannoum A, Norris RC, Iyer K, Zdravkova L, Yu A, Nieva P (2016) Optical Characterization of Commercial Lithiated Graphite Battery Electrodes and in Situ Fiber Optic Evanescent Wave Spectroscopy. ACS Appl Mater Interfaces 8(29):18763–18769. https://doi.org/10.1021/acsami.6b03638

    Article  Google Scholar 

  57. Manka D, Ivers-Tiffée E (2015) Electro-optical measurements of lithium intercalation/de-intercalation at graphite anode surfaces. Electrochim Acta 186:642–653. https://doi.org/10.1016/j.electacta.2015.10.072

    Article  Google Scholar 

  58. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I (2009) Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180(2–3):222–225. https://doi.org/10.1016/j.ssi.2008.12.015

    Article  Google Scholar 

  59. Li J, Dudney NJ, Xiao X, Cheng YT, Liang C, Verbrugge MW (2015) Asymmetric Rate Behavior of Si Anodes for Lithium-Ion Batteries: Ultrafast De-Lithiation versus Sluggish Lithiation at High Current Densities. Adv Energy Mater 5(6):1401627. https://doi.org/10.1002/aenm.201401627

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant numbers 12041201 and11827802)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. Zhang or W. Qiu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H.M., Yang, W., Kang, Y.L. et al. In-situ Strain Field Measurement and Mechano-electro-chemical Analysis of Graphite Electrodes Via Fluorescence Digital Image Correlation. Exp Mech 61, 1249–1260 (2021). https://doi.org/10.1007/s11340-021-00749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-021-00749-y

Keywords

Navigation