Skip to main content

Advertisement

Log in

Soil Stoichiometry Mediates Links Between Tree Functional Diversity and Soil Microbial Diversity in a Temperate Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Interactions between plants and soil microbial communities underpin soil processes and forest ecosystem function, but the links between tree diversity and soil microbial diversity are poorly characterized. Differences in both the taxonomic and functional diversity of trees and microbes can shape soil nutrient status and carbon storage, but the stoichiometry of carbon and nutrients in the soil also influences resource availability to plant and microbial communities. Given the key role of resource availability in plant–soil interactions, we hypothesized that relationships between tree diversity metrics and soil bacterial or fungal diversity are mediated by soil stoichiometry. To test our hypothesis, we measured tree diversity metrics (tree species richness, functional trait diversity and functional trait composition) and soil stoichiometry in a temperate forest in China, and we determined soil microbial diversity by Illumina sequencing. We used structural equation models to assess the relationships between tree diversity metrics and soil bacterial or fungal diversity and to evaluate the influence of soil stoichiometry. Overall, microbial diversity was strongly related to soil stoichiometry, whereby fungal diversity was associated with high soil N/P ratios, whereas bacterial diversity was related to high soil C/P ratios. Soil bacterial and fungal diversity were more closely related to tree functional trait diversity and composition than to tree species richness, and the links between tree and soil microbial diversity were mediated by soil stoichiometry. The strong links between tree functional traits, soil stoichiometry and soil bacteria or fungi suggest that resource quality plays a key role in plant–microbial interactions. Our results highlight the importance of nutrient stoichiometry in linkages between tree functional diversity and soil microbial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The DOI of the dataset published in Dryad is as follows: https://doi.org/10.5061/dryad.547d7wm73

References

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X. 2015. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biology and Biochemistry 80:70–78.

    Article  CAS  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L. 2011. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology 25:473–483.

    Article  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT. 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29:692–699.

    Article  Google Scholar 

  • Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505–511.

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA. 2010. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change. New York, NY, USA: Oxford University Press.

    Google Scholar 

  • Bödeker ITM, Lindahl BD, Olson Å, Clemmensen KE. 2016. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Functional Ecology 30:1967–1978.

    Article  Google Scholar 

  • Boeddinghaus RS, Marhan S, Berner D, Boch S, Fischer M, Hölzel N, Kattge J, Klaus VH, Kleinebecker T, Oelmann Y, Prati D, Schäfer D, Schöning I, Schrumpf M, Sorkau E, Kandeler E, Manning P. 2019. Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology 107:2197–2210.

    Article  CAS  Google Scholar 

  • Bray SR, Kitajima K, Mack MC. 2012. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology and Biochemistry 49:30–37.

    Article  CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal 11:2639–2643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camenzind T, Philipp Grenz K, Lehmann J, Rillig MC. 2020. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters n/a: 1–11.

  • Carrillo Y, Ball BA, Molina M. 2016. Stoichiometric linkages between plant litter, trophic interactions and nitrogen mineralization across the litter–soil interface. Soil Biology and Biochemistry 92:102–110.

    Article  CAS  Google Scholar 

  • Chen L, Xiang W, Wu H, Ouyang S, Zhou B, Zeng Y, Chen Y, Kuzyakov Y. 2019. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biology and Biochemistry 130:113–121.

    Article  CAS  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleveland CC, Liptzin D. 2007. C:N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252.

    Article  Google Scholar 

  • Conti G, Díaz S. 2013. Plant functional diversity and carbon storage – an empirical test in semi-arid forest ecosystems. Journal of Ecology 101:18–28.

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Pooter H. 2003. Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335–380.

    Article  Google Scholar 

  • Delgado-Baquerizo M, Fry EL, Eldridge DJ, de Vries FT, Manning P, Hamonts K, Kattge J, Boenisch G, Singh BK, Bardgett RD. 2018. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist 219:574–587.

    Article  Google Scholar 

  • Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE, Abu Al-Soud W, Sørensen S, Bardgett RD, Singh BK. 2017. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology 19:1176–1188.

    Article  CAS  PubMed  Google Scholar 

  • Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. 2019. Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests. Frontiers in Microbiology 10.

  • Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998.

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer N, Powell JR. 2017. Plant trait effects on soil organisms and functions. Pedobiologia 65:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q. 2015. Linkages of plant and soil C:N: P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil 392:127–138.

    Article  CAS  Google Scholar 

  • Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology 10:538–550.

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354–1364.

    Article  PubMed  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637.

    Article  Google Scholar 

  • Grace JB, Anderson TM, Olff H, Scheiner SM. 2010. On the specification of structural equation models for ecological systems. Ecological Monographs 80:67–87.

    Article  Google Scholar 

  • Güsewell S, Gessner MO. 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology 23:211–219.

    Article  Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168:377–385.

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Jørgensen HB. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98:754–763.

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics 36:191–218.

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A. 2000. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science 5:304–308.

    Article  CAS  PubMed  Google Scholar 

  • Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van Der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V. 2000. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks: We assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship—depending on the strength and type of interactions among species. BioScience 50:1049–1061.

    Article  Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G. 2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist 173:463–480.

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T. 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytologist 174:430–440.

    Article  CAS  Google Scholar 

  • Krishna MP, Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment 2:236–249.

    Article  Google Scholar 

  • Laliberte E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.

    Article  PubMed  Google Scholar 

  • Li S, Huang X, Shen J, Xu F, Su J. 2020. Effects of plant diversity and soil properties on soil fungal community structure with secondary succession in the Pinus yunnanensis forest. Geoderma 379: 114646.

  • Liu S, Wang H, Tian P, Yao X, Sun H, Wang Q, Delgado-Baquerizo M. 2020. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biology and Biochemistry 144: 107763.

  • Lladó S, López-Mondéjar R, Baldrian P. 2017. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews 81:e00063-e116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu R. 1999. Analytical methods of soil and agricultural chemistry. Beijing: China Agricultural Science and Technology Press. pp 107–240.

    Google Scholar 

  • Ma X, Geng Q, Zhang H, Bian C, Chen HYH, Jiang D, Xu X. 2021. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytologist 229:2957–2969.

    Article  CAS  Google Scholar 

  • Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez JR, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang D, Woods NN, Yuan X, Zaady E, Singh BK. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences 112:15684–15689.

    Article  CAS  Google Scholar 

  • Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malaeb ZA, Jk Summers, Pugesek BH. 2000. Using structural equation modeling to investigate relationships among ecological variables. Environmental and Ecological Statistics 7:93–111.

    Article  Google Scholar 

  • McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK. 2010. Functional diversity in resource use by fungi. Ecology 91:2324–2332.

    Article  PubMed  Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016a. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20:241–248.

    Article  Google Scholar 

  • Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, Paquette A, Gravel D, Reich PB, Kennedy PG. 2016b. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Molecular Ecology 25:4032–4046.

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2015. vegan: Community Ecology Package. R package version 2.3–1. R Foundation for Statistical Computing.

  • Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology 98:1074–1083.

    Article  Google Scholar 

  • Pantha P, Dassanayake M. 2020. Living with Salt. The innovation 1: 100050.

  • Paquette A, Messier C. 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography 20:170–180.

    Article  Google Scholar 

  • Pinheiro J, Bates D. 2016. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.

  • Prada-Salcedo LD, Goldmann K, Heintz-Buschart A, Reitz T, Wambsganss J, Bauhus J, Buscot F. 2021. Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology 30:572–591.

    Article  CAS  PubMed  Google Scholar 

  • Prada-Salcedo LD, Wambsganss J, Bauhus J, Buscot F, Goldmann K. 2020. Low root functional dispersion enhances functionality of plant growth by influencing bacterial activities in European forest soils. Environmental Microbiology n/a: 1–18.

  • R Development Core Team. 2019. R version 3.6.1 R foundation for statistical computing, Vienna, Austria.

  • Rosseel Y. 2012. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48:1–36.

    Article  Google Scholar 

  • Sayer EJ, Oliver AE, Fridley JD, Askew AP, Mills RTE, Grime JP. 2017. Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. Ecology and Evolution 7:855–862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL. 2015. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96:134–142.

    Article  PubMed  Google Scholar 

  • Shigyo N, Umeki K, Hirao T. 2019. Plant functional diversity and soil properties control elevational diversity gradients of soil bacteria. FEMS Microbiology Ecology 95.

  • Sparks DL. 1996. Methods of soil analysis. Part 3, Chemical methods. Madison: Soil Science Society of America: American Society of Agronomy.

  • Stackebrandt E, Goebel B. 1994. Taxonomic note: A place for DNA:DNA reassociation and 16s rRNA sequence analysis in the present spec. International Journal of Systematic Bacteriology 44:846–849.

    CAS  Google Scholar 

  • Steinauer K, Fischer FM, Roscher C, Scheu S, Eisenhauer N. 2017. Spatial plant resource acquisition traits explain plant community effects on soil microbial properties. Pedobiologia 65:50–57.

    Article  Google Scholar 

  • Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD. 2018. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal 12:2187–2197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology 22:955–963.

    Article  Google Scholar 

  • Tedersoo L, Mett M, Ishida TA, Bahram M. 2013. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytologist 199:822–831.

    Article  Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry 84:53–64.

    Article  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11:296–310.

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301.

    Article  PubMed  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116:882–892.

    Article  Google Scholar 

  • Vitali F, Mastromei G, Senatore G, Caroppo C, Casalone E. 2016. Long lasting effects of the conversion from natural forest to poplar plantation on soil microbial communities. Microbiological Research 182:89–98.

    Article  PubMed  Google Scholar 

  • Voříšková J, Brabcová V, Cajthaml T, Baldrian P. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201:269–278.

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Swenson NG, Wiegand T, Wolf A, Howe R, Lin F, Ye J, Yuan Z, Shi S, Bai X, Xing D, Hao Z. 2013. Phylogenetic and functional diversity area relationships in two temperate forests. Ecography 36:883–893.

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.

    Article  CAS  PubMed  Google Scholar 

  • Waring BG, Averill C, Hawkes CV. 2013. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology Letters 16:887–894.

    Article  PubMed  Google Scholar 

  • Xu Z, Yu G, Zhang X, He N, Wang Q, Wang S, Wang R, Zhao N, Jia Y, Wang C. 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry 104:152–163.

    Article  CAS  Google Scholar 

  • Yang H. 1985. Distribution patterns of dominant tree species on northern slope of Changbai Mountain. Res for Ecosyst 5:1–14.

    CAS  Google Scholar 

  • Yuan Z, Ali A, Ruiz-Benito P, Jucker T, Mori A, Wang S, Zhang X, Li H, Hao Z, Wang X, Loreau M. 2020. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology n/a.

  • Yuan Z, Wang S, Gazol A, Mellard J, Lin F, Ye J, Hao Z, Wang X, Loreau M. 2016. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia 182:1175–1185.

    Article  PubMed  Google Scholar 

  • Yusoff MZM, Hu A, Feng C, Maeda T, Shirai Y, Hassan MA, Yu C-P. 2013. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresource Technology 145:90–96.

    Article  PubMed  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W. 2015. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs 85:133–155.

    Article  Google Scholar 

  • Zhang J, Elser JJ. 2017. Carbon:Nitrogen:Phosphorus Stoichiometry in Fungi: A Meta-Analysis. Frontiers in Microbiology 8.

  • Zhang L, Zhang H, Wang Z, Chen G, Wang L. 2016. Dynamic changes of the dominant functioning microbial community in the compost of a 90–m3 aerobic solid state fermentor revealed by integrated meta-omics. Bioresource Technology 203:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Chen HYH, Ruan H. 2018. Global negative effects of nitrogen deposition on soil microbes. The ISME Journal 12:1817–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu J-K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The innovation 1: 100017.

  • Zheng Y, Ji N-N, Wu B-W, Wang J-T, Hu H-W, Guo L-D, He J-Z. 2020. Climatic factors have unexpectedly strong impacts on soil bacterial β-diversity in 12 forest ecosystems. Soil Biology and Biochemistry 142: 107699.

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R: Springer. New York.

Download references

Acknowledgements

This work was funded by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant ZDBS-LY-DQC019), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB 31030000), the National Natural Science Foundation of China (31770666, 31670632, 32001121), LiaoNing Revitalization Talents Program (Grant XLYC1807039), Youth Innovation Promotion Association CAS (2017241) and K. C. Wong Education Foundation. The authors would like to thank Dr. Arshad Ali from Nanjing Forestry University for his comments and suggestions on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuoqiang Yuan or Xugao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author Contributions

AS, ZY and XW conceived the idea; ZY, FL, SF, JY, SL, ZH and XW collected the data. AS analysed and visualized the data. AS led the writing of the manuscript with support from EJS, ZY and XW; all authors contributed to the interpretation of the results and revisions of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanaei, A., Sayer, E.J., Yuan, Z. et al. Soil Stoichiometry Mediates Links Between Tree Functional Diversity and Soil Microbial Diversity in a Temperate Forest. Ecosystems 25, 291–307 (2022). https://doi.org/10.1007/s10021-021-00655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00655-3

Keywords

Navigation