Skip to main content
Log in

The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation \(i\partial _{t}u+\Delta u=\lambda |x|^{-\alpha }|u|^{\beta }u\) in \(H^1\). The well-posedness theory in \(H^1\) has been intensively studied in recent years, but the currently known approaches do not work for the critical case \(\beta =(4-2\alpha )/(n-2)\). It is still an open problem. The main contribution of this paper is to develop the theory in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We may replace the norm with \(\Vert f\Vert _{H^{1,r}(|x|^{-r\gamma })} = \Vert (1+|\nabla |^2)^{1/2} f \Vert _{L^r (|x|^{-r\gamma })}\). Indeed, the two norms coincide with each other if \(1<r<\infty \) and \(0<r\gamma <n\). This can be shown by a standard process using a weighted version [20, Lemma 12.1.4] of Mikhlin’s multiplier theorem.

  2. Since \(|x|^{-r\gamma }\) is a locally integrable and nonnegative function in \({\mathbb {R}}^n\) if \(\gamma <n/r\), we can define a Radon measure \(\mu \) which is canonically associated with \(|x|^{-r\gamma }\) by \(\mu (E)=\int _{E} |x|^{-r\gamma } dx\), \(E \subseteq {\mathbb {R}}^n\), so that \(d\mu (x)=|x|^{-r\gamma } dx\). (See [14, p. 5] for details.) Hence we may regard \(L^r(|x|^{-r\gamma })\) as \(L^r(d\mu )\).

References

  1. Ben-Artzi, M., Klainerman, S.: Decay and regularity for the Schrödinger equation. J. Anal. Math. 58, 25–37 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bergé, L.: Soliton stability versus collapse. Phys. Rev. E 62, 3071–3074 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction Grundlehren der Mathematischen Wissenschaften, no. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence, RI (2003)

  6. Cazenave, T., Weissler, F.B.: Some remarks on the nonlinear Schrödinger equation in the critical case. In: Nonlinear Semigroups, Partial differential equations and attractors. Lecture Notes in Math., vol. 1394. Springer, Berlin (1989)

  7. Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  Google Scholar 

  8. Dinh, V.D.: Scattering theory in a weighted \(L^2\) space for a class of the defocusing inhomogeneous nonlinear Schrödinger equation. arXiv:1710.01392v1 (2017)

  9. Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 16, 193–208 (2016)

    Article  MathSciNet  Google Scholar 

  10. Genoud, F., Stuart, C.A.: Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin. Dyn. Syst. 21, 137–186 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations I. The Cauchy problem, general case. J. Funct. Anal. 32, 1–32 (1979)

    Article  Google Scholar 

  12. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1985)

    Article  MathSciNet  Google Scholar 

  13. Guzmán, C.M.: On well posedness for the inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. Real World Appl. 37, 249–286 (2017)

    Article  MathSciNet  Google Scholar 

  14. Heinonen, J., Kilpeäinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs, Oxford University Press, Oxford (1993)

  15. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm. Math. Phys. 282, 435–467 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46, 113–129 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Kato, T., Yajima, K.: Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys. 1, 481–496 (1989)

    Article  MathSciNet  Google Scholar 

  18. Keel, M., Tao, T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kim, J., Lee, Y., Seo, I.: On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case. J. Differential Equations 280, 179–202 (2021)

    Article  MathSciNet  Google Scholar 

  20. Maźya, V.G., Shaposhnikova, T.O.: Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators. Grundlehren der Mathematischen Wissenschaften, 337. Springer, Berlin (2009)

  21. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  22. Sugimoto, M.: Global smoothing properties of generalized Schrödinger equations. J. Anal. Math. 76, 191–204 (1998)

    Article  MathSciNet  Google Scholar 

  23. Towers, I., Malomed, B.A.: Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity. J. Opt. Soc. Am. B Opt. Phys. 19, 537–543 (2002)

    Article  MathSciNet  Google Scholar 

  24. Vilela, M.C.: Regularity of solutions to the free Schrödinger equation with radial initial data. Illinois J. Math. 45, 361–370 (2001)

    Article  MathSciNet  Google Scholar 

  25. Watanabe, K.: Smooth perturbations of the selfadjoint operator \(|\Delta |^{\alpha /2}\). Tokyo J. Math. 14, 239–250 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihyeok Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by NRF-2019R1F1A1061316.

Appendix

Appendix

In this final section, we show that (Xd) is a complete metric space.

Let \(\{u_k\}\) be a Cauchy sequence in (Xd). Then it also becomes a Cauchy sequence in \(C_t(I; L_x^2) \cap L^q_t(I; L_x^r(|x|^{-r\gamma }))\). Since this space is completeFootnote 2, there exists \(u\in C_t(I; L_x^2) \cap L^q_t(I; L_x^r(|x|^{-r\gamma }))\) such that \(d(u_k,u)\rightarrow 0\) as \(k \rightarrow \infty \). Namely,

$$\begin{aligned} \sup _{t \in I}\Vert u_k-u\Vert _{ L_x^2} +\Vert u_k-u\Vert _{L_t^{q}(I;L_x^r(|x|^{-r\gamma }))} \rightarrow 0 \end{aligned}$$
(4.1)

for all \(\gamma \)-Schrödinger admissible (qr).

Now it is enough to show \(u\in X\). For this, we shall use the fact that every bounded sequence in a reflexive space has a weakly convergent subsequence. Since \(u_k \in C_t(I;H_x^1)\), we see that \(u_k(t) \in H_x^1\) for almost all \(t \in I\) and \(\Vert u_k(t)\Vert _{H_x^1}\le N\). Since \(H_x^1\) is reflexive, there exists a subsequence, which we still denote by \(u_k(t)\), such that \(u_k(t) \rightharpoonup v(t)\) in \(H_x^1\) and

$$\begin{aligned} \Vert v(t)\Vert _{ H_x^1 } \le \liminf _{k\rightarrow \infty } \Vert u_k(t)\Vert _{H_x^1}\le N. \end{aligned}$$

On the other hand, by (4.1), \(u_k(t) \rightarrow u(t)\) in \( L_x^2\). By the uniqueness of the limit, we conclude \(u(t)=v(t)\) and therefore \(\Vert u(t)\Vert _{H_x^1} \le N\). Consequently, \(u \in C_t(I; H_x^1)\) with \(\sup _{t\in I} \Vert u\Vert _{H_x^{1}}\le N\).

It remains to show that \(u \in L_t^q (I; H^{1,r}_x(|x|^{-r\gamma }))\) with \(\Vert u\Vert _{{\mathcal {H}}_{\gamma }(I)} \le M\). For this, we shall apply the following lemma with \(Y=H_x^{1,r} (|x|^{-r\gamma })\) and \(Z=L_x^r(|x|^{-r\gamma })\).

Lemma 4.1

([5, Theorem 1.2.5]). Consider two Banach spaces \(Y \hookrightarrow Z\) and \(1<q \le \infty \). Let \((f_k)_{k\ge 0}\) be a bounded sequence in \(L^q(I;Z)\) and let \(f:I \rightarrow Z\) be such that \(f_k(t)\rightharpoonup f(t)\) in Z as \(k \rightarrow \infty \) for almost all \(t \in I\). If \((f_k)_{k\ge 0}\) is bounded in \(L^q(I; Y)\) and if Y is reflexive, then \(f \in L^q(I; Y)\) and \(\Vert f\Vert _{L^q(I; Y)} \le \liminf _{k\rightarrow \infty } \Vert f_k\Vert _{L^q(I; Y)}.\)

Indeed, since \(u_k \in X\) is a bounded sequence in \(L_t^{q}(I;L_x^r(|x|^{-r\gamma }))\), we first note that

$$\begin{aligned} \Vert u\Vert _{L_t^{q}(I;L_x^r(|x|^{-r\gamma }))} \le \Vert u-u_k\Vert _{L_t^{q}(I;L_x^r(|x|^{-r\gamma }))}+\Vert u_k\Vert _{L_t^{q}(I;L_x^r(|x|^{-r\gamma }))}\le M \end{aligned}$$

as \(k\rightarrow \infty \), so that \(u \in L_t^q(I; L^r_x(|x|^{-r\gamma }))\). Thus we see that \(u(t) \in L_x^r( |x|^{-r\gamma })\) for almost all \(t \in I\) and \(u_k(t) \rightarrow u(t)\) in \(L_x^r( |x|^{-r\gamma })\). On the other hand, we see that \(u_k\) is bounded in \(L_t^q(I; H_x^{1,r}(|x|^{-r\gamma }))\) as

$$\begin{aligned} \Vert u_k\Vert _{L_t^q(I; H_x^{1,r}(|x|^{-r\gamma }))} \le \Vert u_k\Vert _{{\mathcal {H}}_{\gamma }}\le M. \end{aligned}$$

Then, since \(H_x^{1, r}(|x|^{-r\gamma })\) is reflexive as long as \(1<r<\infty \) and \(r\gamma <n\) (see [14, p. 13]), the above lemma implies now

$$\begin{aligned} u \in L_t^q(I;H_x^{1,r} (|x|^{-r\gamma })) \end{aligned}$$

and

$$\begin{aligned} \Vert u\Vert _{L_t^q (I; H_x^{1,r} (|x|^{-r\gamma }))} \le \liminf _{k\rightarrow \infty } \Vert u_k\Vert _{L_t^q (I; H^{1,r}_x (|x|^{-r\gamma })) } \le M \end{aligned}$$

for all \(\gamma \)-Schrödinger admissible (qr). Hence, we get \(\Vert u\Vert _{{\mathcal {H}}_{\gamma }(I)} \le M\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Seo, I. The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation. Arch. Math. 117, 441–453 (2021). https://doi.org/10.1007/s00013-021-01632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-021-01632-x

Keywords

Mathematics Subject Classification

Navigation