Skip to main content
Log in

Adsorption of Phenol by Activated Carbons Based on Fossil Coals of Various Degrees of Metamorphism

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of phenol by activated carbons obtained by the alkaline thermolysis (KOH, 800°C) of fossil coals of various degrees of metamorphism (Cdaf = 70.4–95.6%) was studied. Kinetic dependences and adsorption isotherms were obtained at initial concentrations of ≤3 mg/cm3 (25°C). The rate constants of absorption of the adsorbate, maximum and specific capacities for phenol, and their dependences on Cdaf were determined. The main processes of the interaction of phenol with surface adsorption centers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lin, S.-H. and Juang, R.-S., J. Environ. Manage., 2009, vol. 90, no. 3, p. 1336. https://doi.org/10.1016/j.jenvman.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Tran, V.S., Ngo, H.H., Guo, W., Zhang, J., Liang, S., Ton-That, C., and Zhang, X., Biores. Technol., 2015, vol. 182, p. 353. https://doi.org/10.1016/j.biortech.2015.02.003

    Article  CAS  Google Scholar 

  3. Vrednye veshchestva v promyshlennosti. Spravochnik dlya khimikov, inzhenerov i vrachei (Harmful Substances in Industry: A Handbook for Chemists, Engineers, and Doctors), Lazarev, N. V. and Levina, E. N., Eds., Leningrad: Khimiya, 1976, vol. 1.

    Google Scholar 

  4. Bansal, R.C. and Goyal, M., Activated Carbon Adsoption, Boca Raton: CRC, 2005.

    Book  Google Scholar 

  5. Hameed, B.H. and Rahman, A.A., J. Hazard. Mater., 2008, vol. 160, p. 576. https://doi.org/10.1016/j.jhazmat.2008.03.028

    Article  CAS  PubMed  Google Scholar 

  6. Park, K.-H., Balathanigaimani, M.S., Shim, W.-G., Lee, J.-W., and Moon, H., Micropor. Mesopor. Mater., 2010, vol. 127, nos. 1–2, p. 1. https://doi.org/10.1016/j.micromeso.2009.06.032

    Article  CAS  Google Scholar 

  7. Wang, B., Zhu, C., Zhang, Z., Zhang, W., Chen, X., Sun, N., Wei, W., Sun, Y., and Ji, H., Fuel, 2016, vol. 179, no. 9, p. 274. https://doi.org/10.1016/j.fuel.2016.03.088

    Article  CAS  Google Scholar 

  8. Kowalczyk, P., Deditius, A., Ela, W.P., Wisniewski, M., Gauden, P.A., Terzyk, A.P., Furmaniak, S., Wloch, J., Kaneko, K., and Neimark, A.V., Carbon, 2018, vol. 135, p. 12. https://doi.org/10.1016/j.carbon.2018.03.063

    Article  CAS  Google Scholar 

  9. Lorenc-Grabowska, E. and Rutkowski, P., Appl. Surf. Sci., 2014, vol. 316, p. 435. https://doi.org/10.1016/j.apsusc.2014.08.024

    Article  CAS  Google Scholar 

  10. Isaeva, L.N., Tamarkina, Y.V., Bovan, D.V., and Kucherenko, V.A., J. Sib. Fed. Univ., Chem., 2009, vol. 2, no. 1., p. 25. http://elib.sfu-kras.ru/handle/2311/1301 http://elib.sfu-kras.ru/handle/2311/1301

    Google Scholar 

  11. Fedorova, N.I., Manina, T.S., and Ismagilov, Z.R., Solid Fuel Chem., 2015, vol. 49, no. 1, p. 30. https://doi.org/10.3103/S0361521915010048

    Article  CAS  Google Scholar 

  12. Kucherenko, V.A., Tamarkina, Yu.V., and Saberova, V.A., Solid Fuel Chem., 2020, vol. 54, no. 2, p. 79. https://doi.org/10.3103/S0361521920020068

    Article  CAS  Google Scholar 

  13. Jagiello, J. and Olivier, J.P., Carbon, 2013, vol. 55, p. 70. https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  14. Hadi, P., Yeung, K.Y., Barford, J., An, K.J., and McKay, G., Chem. Eng. J., 2015, vol. 269, p. 20. https://doi.org/10.1016/j.cej.2015.01.090

    Article  CAS  Google Scholar 

  15. Li, Y., Xing, B., Wang, X., Wang, K., Zhu, L., and Wang, S., Energy Fuels, 2019, vol. 33, no. 12, p. 12459. https://doi.org/10.1021/acs.energyfuels.9b02924

    Article  CAS  Google Scholar 

  16. Al-Ghouti, M.A. and Da’ana, D.A., J. Hazard. Mater., 2020, vol. 393, p. 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  17. Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G., and Almeida, V.C., Chem. Eng. J., 2011, vol. 174, no. 1, p. 117. https://doi.org/10.1016/j.cej.2011.08.058

    Article  CAS  Google Scholar 

  18. Mahadevi, A.S. and Sastry, G.N., Chem. Rev., 2013, vol. 113, no. 3, p. 2100. https://doi.org/10.1021/cr300222d

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Tamarkina, V. M. Anishchenko, A. M. Redko or V. A. Kucherenko.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamarkina, Y.V., Anishchenko, V.M., Redko, A.M. et al. Adsorption of Phenol by Activated Carbons Based on Fossil Coals of Various Degrees of Metamorphism. Solid Fuel Chem. 55, 133–141 (2021). https://doi.org/10.3103/S0361521921030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521921030101

Keywords:

Navigation