Skip to main content
Log in

Effects of Low-Temperature Pyrolysis in a Tube Furnace on Water Re-adsorption of Loy Yang Lignite and Microscopic Description of the Process

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Loy Yang lignite was pyrolyzed under nitrogen atmosphere in a tube furnace. The changes in physicochemical properties during low-temperature pyrolysis process and their effects on water re-adsorption capacity were investigated. All the samples were characterized by X-ray photoelectron spectroscopy, zeta potential, N2 adsorption–desorption analyzer, and scanning electron microscopy. Moreover, equilibrium water contents (EWCs) across a range of relative humidities (RHs) were measured. The results showed that oxygen-containing functional groups continuously decreased in the temperature range of 180–300°C; in contrast, pore volume increased mainly due to the release of volatiles. Note that the pore volume of the sample treated at 300°C increased substantially relative to those of the other samples. Furthermore, the EWCs of the treated samples decreased compared with that of raw lignite. For the microscopic description of the process, at low RHs the decrease in oxygen-containing functional groups corresponds to the decrease in EWC. At high RHs the competitive effects of the decrease in oxygen-containing functional groups and increase in pore volume account for the changes in EWC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. S1.

Similar content being viewed by others

REFERENCES

  1. Nonaka, M. and Sasaki, K., Dry. Technol., 2016, vol. 34, no. 12, p. 1471.

    Article  Google Scholar 

  2. Vyazova, N.G., Proidakov, A.G., Shaulina, L.P., and Shmid, A.F., Solid Fuel Chem., 2019, vol. 53, no. 3, p. 129.

    Article  CAS  Google Scholar 

  3. Sakurovs, R., Lewis, C., and Wibberley, L., Fuel, 2016, vol. 172, p. 124.

    Article  CAS  Google Scholar 

  4. Zhou, G.S., Huang, Q.X., Yu, B., Tong, H., Chi, Y., and Yan, J.H., Chinese J. Chem. Eng., 2017, vol. 26, no. 5, p. 1171.

    Article  Google Scholar 

  5. Li, C.Z., Advances in the Science of Victorian Brown Coal, Amsterdam: Elsevier, 2004.

    Google Scholar 

  6. Liu, X.C., Hirajima, T., Nonaka, M., and Sasaki, K., Mater. Trans., 2016, vol. 57, no. 6, p. 935.

    Article  CAS  Google Scholar 

  7. Yu, J.L., Tahmasebi, A., Han, Y.N., Yin, F.K., and Li, X.C., Fuel Process. Technol., 2013, vol. 106, p. 9.

    Article  CAS  Google Scholar 

  8. Yang, Y.L., Jing, X.X., Li, Z.Q., Liu, X., Zhang, Y.L., and Chang, L.P., Dry. Technol., 2013, vol. 31, no. 12, p. 1430.

    Article  CAS  Google Scholar 

  9. Vogt, C., Wild, T., Bergins, C., Strauß, K., Hulston J., and Chaffee, A.L., Fuel, 2012, vol. 93, p. 433.

    Article  CAS  Google Scholar 

  10. Ye, C.P., Huang, H.J., Li, X.H., Li, W.Y., and Feng, J., Fuel, 2017, vol. 207, p. 85.

    Article  CAS  Google Scholar 

  11. Zhang Y.L., Jing, X.X., Jing, K.G., Chang, L.P., and Bao, W.R., Appl. Surf. Sci., 2015, vol. 324, p. 90.

    Article  CAS  Google Scholar 

  12. Murray, J.B. and Evanst, D.G., Fuel, 1972, vol. 51, no. 4, p. 290.

    Article  CAS  Google Scholar 

  13. Huang, H., Wang, Y.J., and Cannon, F.S., Fuel Process. Technol., 2009, vol. 90, no. 9, p. 1183.

    Article  CAS  Google Scholar 

  14. Li, Y., Wang, Z.H., Huang, Z.Y., Liu, J.Z., Zhou, J.H., and Cen, K.F., Fuel Process. Technol., 2015, vol. 134, p. 52.

    Article  CAS  Google Scholar 

  15. Salmas, C.E., Tsetsekou, A.H., Hatzilyberis, K.S., and Androutsopoulos, G.P., Dry. Technol., 2001, vol. 19, no. 1, p. 35.

    Article  CAS  Google Scholar 

  16. Liu X.C., Yu, D.L., Zhao, Z.G., Xie, R.L., and Cui, P., Dry. Technol., 2019, vol. 37, no. 12, p. 1481.

    Article  CAS  Google Scholar 

  17. Allardice, D.J., Clemow L.M., and Jackson, W.R., Fuel, 2003, vol. 82, no. 1, p. 35.

    Article  Google Scholar 

  18. Feng, X.F., Zhang, C., Tan, P., Zhang, X.P., Fang, Q.Y., and Chen, G., Fuel, 2016, vol. 185, p. 112.

    Article  CAS  Google Scholar 

  19. Ling, Q., Zhao, Z.G., Xie, R.L., Yu, D.L., Ke, Q.P., Lei, Z., and Cui, P., J. Anal. Appl. Pyrol., 2018, vol. 135, p. 319.

    Article  Google Scholar 

  20. Simons, G.A., Combust. Flame, 1983, vol. 53, p. 83.

    Article  CAS  Google Scholar 

  21. Liu, X.C., Hirajima, T., Nonaka, M., and Sasaki, K., J. Therm. Anal. Calorim., 2016, vol. 126, no. 3, p. 1925.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Anhui Provincial Education Department (KJ2019A0076), the Natural Science Foundation of Anhui Province (2008085QB87), and Student Research Training Program of Anhui Province (S201910360204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delei Yu, Xinyue Pan, Mingzhu Tan or Xiangchun Liu.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Pan, X., Tan, M. et al. Effects of Low-Temperature Pyrolysis in a Tube Furnace on Water Re-adsorption of Loy Yang Lignite and Microscopic Description of the Process. Solid Fuel Chem. 55, 200–206 (2021). https://doi.org/10.3103/S0361521921030125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521921030125

Keywords:

Navigation