Skip to main content
Log in

Influence of Aerodynamic Abrasive Treatment on the Phase State of the Surface Layer of Ceramics of Partially Stabilized Zirconium Dioxide

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Ceramics based on partially stabilized zirconium dioxide are widely used in dentistry. The surface of a ceramic product is subjected to aerodynamic abrasive processing for reliable durable fixing before applying polymer cement. The mechanical properties of a machined thin ceramic layer are largely determined by its phase composition. The method of X-ray phase analysis is used to study the effect of aerodynamic abrasive treatment on the phase state of the surface layers of partially stabilized zirconium dioxide, depending on the type and conditions of formation of the developed microrelief. It is found that aerodynamic abrasive treatment is accompanied by a change in the initial phase composition, i.e., the appearance of a new monoclinic phase. The monoclinic phase is shown to be removed during thermal annealing at a temperature of no less than 1000°C. As an alternative to aerodynamic abrasive treatment prior to the application of polymer cement, it is proposed that the bonded surface be treated with a high-current pulsed beam of low-energy electrons. Such processing creates a developed surface microrelief without introducing a monoclinic phase in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. C. Garvie, R. H. Hannink, and R. T. Pascoe, in Sintering Key Papers, Ed. by S. Somiya and Y. Moriyoshi (Springer, Dordrecht, 1990), p. 253. https://doi.org/10.1007/978-94-009-0741-6_14

  2. I. Nettleship and R. Stevens, Int. J. High Technol. Ceram. 3, 1 (1987).

    Article  CAS  Google Scholar 

  3. B. Stawarczyk, C. Keul, M. Eichberger, D. Figge, D. Edelhoff, and N. Lumkemann, Quintessence Int. 48, 369 (2017). https://doi.org/10.3290/j.qi.a38057

    Article  Google Scholar 

  4. S. Tailor and M. Singh, J. Cluster Sci. 27, 1097 (2016). https://doi.org/10.1007/s10876-016-1014-y

    Article  CAS  Google Scholar 

  5. T. A. G. Restivo, M. Durazzo, S. R. H. de Mello-Castanho, et al., J. Therm. Anal. Calorim. 131, 249 (2018). https://doi.org/10.1007/s10973-017-6560-5

    Article  CAS  Google Scholar 

  6. M. Taheri, M. Mazaheri, F. Golestani-Fard, H. Rezaie, and R. Schaller, Ceram. Int. 40, 3347 (2014). https://doi.org/10.1016/j.ceramint.2013.09.098

    Article  CAS  Google Scholar 

  7. D. Špehar and M. Jakovac, Acta Stomatol. Croat. 49, 137 (2015). https://doi.org/10.15644/asc49/2/7

    Article  Google Scholar 

  8. M. Özcan and C. A. M. Volpato, Curr. Oral Health Rep. 2, 190 (2015). https://doi.org/10.1007/s40496-015-0071-x

    Article  Google Scholar 

  9. G. Oilo and K. D. Jorgensen, J. Oral Rehabil. 5, 377 (1978). https://doi.org/10.1111/j.1365-2842.1978.tb01257.x

    Article  CAS  Google Scholar 

  10. M. Inokoshi, J. De Munck, S. Minakuchi, and B. Van Meerbeek, J. Dent. Res. 93, 329 (2014). https://doi.org/10.1177/0022034514524228

    Article  CAS  Google Scholar 

  11. M. B. Blatz, M. Vonderheide, and J. Conejo, J. Dental Res. 97, 132 (2018). https://doi.org/10.1177/0022034517729134

    Article  CAS  Google Scholar 

  12. O. Y. Kurapova, A. G. Glukharev, O. V. Glumov, M. Y. Kurapov, E. V. Boltynjuk, and V. G. Konakov, Electrochim. Acta 320, 134573 (2019). https://doi.org/10.1016/j.electacta.2019.134573

    Article  CAS  Google Scholar 

  13. D. R. R. Lazar, M. C. Bottino, M. Özcan, et al., Dental Mater. 24, 1676 (2008). https://doi.org/10.1016/j.dental.2008.04.002

    Article  CAS  Google Scholar 

  14. T. S. Frangulyan, I. P. Vasil’ev, and S. A. Ghyngazov, Ceram. Int. 44, 2501 (2018). https://doi.org/10.1016/j.ceramint.2017.10.234

    Article  CAS  Google Scholar 

  15. A. P. Surzhikov, T. S. Frangulyan, S. A. Ghyngazov, and I. P. Vasil’ev, Tech. Phys. Lett. 40, 762 (2014). https://doi.org/10.1134/S1063785014090144

    Article  CAS  Google Scholar 

  16. D. Zaguliaev, V. Gromov, Y. Rubannikova, S. Konovalov, Y. Ivanov, D. Romanov, and A. Semin, Surf. Coat. Technol. 383, 125246 (2020). https://doi.org/10.1016/j.surfcoat.2019.125246

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment “Science” and a grant under the Program for increasing the competitiveness of Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, S.A. Influence of Aerodynamic Abrasive Treatment on the Phase State of the Surface Layer of Ceramics of Partially Stabilized Zirconium Dioxide. J. Surf. Investig. 15, 592–595 (2021). https://doi.org/10.1134/S1027451021030265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021030265

Keywords:

Navigation