Skip to main content
Log in

Pore-Surface Modification as a Method of Controlling the Relaxation of a Nonwetting Liquid Dispersed in a Nanoporous Medium

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This work presents the results of studying hydrophobized silica gel Fluka 100 C8 + C1 with additional chemical surface modification by single-link alkylsilane. The material is studied by low-temperature nitrogen sorption and liquid porometry, including additional liquid porometry methods. The results of studying the system without additional modification are also presented. All results are presented for three temperatures: 20, 40, and 60°C. It is shown that additional chemical modification allows an increase in the fraction of the nonwetting liquid flowing from the pores with increasing temperature while maintaining a significant proportion of nonwetting liquid that has not outflowed under normal conditions. The obtained results show that, by additional modification, it is possible to control the process of the time relaxation of a nonwetting liquid in a nanoporous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Gholami, M. Tafaghodi, B. Abbasi, M. Daroudi, and Kazemi Oskuee, J. Cell. Physiol. 234, 1547 (2018).

    Article  Google Scholar 

  2. S. H. Hong, K. Larocque, D. B. Jaunky, A. Piekny, and J. K. Oh, Colloids Surf., B 172, 608 (2018).

    Article  CAS  Google Scholar 

  3. A. Baeza, D. Ruiz-Molina, and M. Vallet-Regí, Expert Opin. Drug Delivery 14, 783 (2017).

    Article  CAS  Google Scholar 

  4. Y. Zheng, C. D. Fahrenholtz, C. L. Hackett, S. Ding, C. S. Day, R. Dhall, and U. Bierbach, Chem.—Eur. J. 23, 3386 (2017).

    Article  CAS  Google Scholar 

  5. L. Coiffard and V. Eroshenko, J. Colloid Interface Sci. 300, 304 (2006).

    Article  CAS  Google Scholar 

  6. M. Vallet-Regi, A. Rámila, R. P. del Real, and J. Pérez-Pariente, Chem. Mater. 13, 308 (2001).

    Article  CAS  Google Scholar 

  7. Xi. Xu, W. Chen, C. LuZhao, and Yu. Qiao, Appl. Phys. Lett. 104, 203107 (2014).

    Article  Google Scholar 

  8. A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface Sci. 187, 275 (1997).

    Article  CAS  Google Scholar 

  9. V. Eroshenko, R. C. Regis, M. Soulard, and J. Patarin, J. Am. Chem. Soc. 123, 8129 (2001).

    Article  CAS  Google Scholar 

  10. C. V. Suciu, T. Iwatsubo, K. Yaguchi, and M. Ikenaga, J. Colloid Interface Sci. 283, 196 (2005).

    Article  CAS  Google Scholar 

  11. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, V. N. Tronin, V. I. Troyan, and G. V. Lisichkin, Tech. Phys. Lett. 30, 973 (2004).

    Article  CAS  Google Scholar 

  12. A. A. Belogorlov, S. A. Bortnikova, and P. G. Mingalev, Phys. Procedia 72, 33 (2015).

    Article  CAS  Google Scholar 

  13. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, and V. N. Tronin, Phys. Lett. A 378, 2888 (2014).

    Article  CAS  Google Scholar 

  14. V. D. Borman, A. A. Belogorlov, and V. N. Tronin, Colloids Surf., A 496, 63 (2016).

    Article  CAS  Google Scholar 

  15. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem., Int. Ed. Engl. 38, 56 (1999).

    Article  CAS  Google Scholar 

  16. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 100, 385 (2005).

    Article  CAS  Google Scholar 

  17. Han Aijie and Qiao Yu, Chem. Eng. J. 141, 379 (2008).

    Article  CAS  Google Scholar 

  18. V. D. Borman, A. A. Belogorlov, and V. N. Tronin, Phys. Rev. E 93, 022142 (2016).

    Article  CAS  Google Scholar 

  19. A. Yu. Emelianova, S. A. Bortnikovaand, and A. A. Belogorlov, J. Phys.: Conf. Ser. 1099, 012025 (2018).

    Google Scholar 

  20. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, Amsterdam, 2004).

    Book  Google Scholar 

Download references

Funding

This study was carried out at the Center for Physics of Nonequilibrium Atomic Systems and Composites, National Research Nuclear University MEPhI, with financial support from the Russian Foundation for Basic Research within the framework of scientific project no. 19-08-01140 and scientific project no. 17-08-01424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belogorlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortnikova, S.A., Belogorlov, A.A. & Mingalev, P.G. Pore-Surface Modification as a Method of Controlling the Relaxation of a Nonwetting Liquid Dispersed in a Nanoporous Medium. J. Surf. Investig. 15, 575–579 (2021). https://doi.org/10.1134/S1027451021030228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021030228

Keywords:

Navigation