Skip to main content
Log in

Investigation of Helimagnetism in Dy and Ho Thin Films by Neutron Reflectometry

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this paper, the results of investigating thin films of rare-earth helimagnetics (REMs) Dy and Ho by polarized neutron reflectometry are presented. It is shown that the growth by magnetron sputtering of rare-earth structures on sapphire substrates with a buffer layer Nb \(\left[ {1\bar {1}02} \right]\) Al2O3||[110]Nb||\(\left[ {0001} \right]R\) leads to complete relaxation of the Nb crystal lattices and the rare-earth film. It is found that some magnetic phase transitions typical of bulk Dy and Ho are not observed in 200 nm [0001]R thin films or are observed in a modified form. Differences between the Néel and Curie temperatures of thin REM films compared to bulk REMs are determined based on polarized-neutron-reflectometry data and measurements of the temperature dependence of the magnetization in the sample plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Elliott, Magnetic Properties of Rare Earth Metals (Plenum, New York, 1972).

    Book  Google Scholar 

  2. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1963).

    Google Scholar 

  3. J. Yu, P. R. LeClair, G. J. Mankey, J. L. Robertson, M. L. Crow, and W. Tian, Phys. Rev. B: Condens. Matter Mater. Phys. 91, 014404 (2015). https://doi.org/10.1103/PhysRevB.91.014404

    Article  CAS  Google Scholar 

  4. A. S. Chernyshov, A. O. Tsokol, A. M. Tishin, K. A. Gschneidner, and V. K. Pecharsky, Phys. Rev. B: Condens. Matter Mater. Phys. 71, 184410 (2005). https://doi.org/10.1103/PhysRevB.71.184410

    Article  CAS  Google Scholar 

  5. W. C. Koeller, J. W. Cable, M. K. Wilkinson, and E. O. Wollan, Phys. Rev. A: At., Mol., Opt. Phys. 151, 414 (1966). https://doi.org/10.1103/PhysRev.140.A1896

    Article  Google Scholar 

  6. D. Gibbs, D. E. Moncton, K. L. D’Amico, J. Bohr, and B. H. Grier, Phys. Rev. Lett. 55, 234 (1985). https://doi.org/10.1103/PhysRevLett.55.234

    Article  CAS  Google Scholar 

  7. R. A. Cowley and S. Bates, J. Phys. C: Solid State Phys. 21, 4113 (1988). https://doi.org/10.1088/0022-3719/21/22/024

    Article  CAS  Google Scholar 

  8. E. Weschke, H. Ott, E. Schierle, C. Schüßler-Langeheine, D. V. Vyalikh, G. Kaindl, V. Leiner, M. Ay, T. Schmitte, H. Zabel, and P. J. Jensen, Phys. Rev. Lett. 93, 157204 (2004). https://doi.org/10.1103/PhysRevLett.93.157204

    Article  CAS  Google Scholar 

  9. F. Tsui and C. P. Flynn, Phys. Rev. Lett. 71, 1462 (1993). https://doi.org/10.1103/PhysRevLett.71.1462

    Article  CAS  Google Scholar 

  10. R. W. Erwin, J. J. Rhyne, M. B. Salamon, and J. Borchers, R. Sinha Shantanu Du, J. E. Cunningham, and C. P. Flynn, Phys. Rev. B: Condens. Matter Mater. Phys. 35, 6808 (1987). https://doi.org/10.1103/PhysRevB.35.6808

    Article  CAS  Google Scholar 

  11. N. O. Antropov, E. A. Kravtsov, Yu. N. Khaidukov, M. V. Ryabukhina, V. V. Proglyado, O. Weschke, and V. V. Ustinov, JETP Lett. 108, 341 (2018). https://doi.org/10.1134/S0370274X18170113

    Article  CAS  Google Scholar 

  12. V. V. Tarnavich, D. Lott, S. Mattauch, A. Oleshkevych, V. Kapaklis, and S. V. Grigoriev, Phys. Rev. B: Condens. Matter Mater. Phys. 89, 054406 (2014). https://doi.org/10.1103/PhysRevB.89.054406

    Article  CAS  Google Scholar 

  13. J. Kwo, E. M. Gyorgy, D. B. McWhan, M. Hong, F. J. DiSalvo, C. Vettier, and J. E. Bower, Phys. Rev. Lett. 55, 1402 (1985). https://doi.org/10.1103/PhysRevLett.55.1402

    Article  CAS  Google Scholar 

  14. F. A. Adlmann, G. K. Palsson, J. C. Bilheux, J. F. Ankner, P. Gutfreund, M. Kawecki, and M. Wolff, J. Appl. Crystallogr. 49, 2091 (2016). https://doi.org/10.1107/S1600576716014382

    Article  CAS  Google Scholar 

  15. C. F. Majkrzak, J. Kwo, M. Yjng, Y. Yafet, D. Gibbs, C. L. Chen, and J. Bohr, Adv. Phys. 40, 99 (1991). https://doi.org/10.1080/00018739100101482

    Article  CAS  Google Scholar 

  16. D. I. Devyaterikov, V. O. Vas’kovsky, V. D. Zhaketov, E. A. Kravtsov, M. V. Makarova, V. V. Proglyado, E. A. Stepanov, and V. V. Ustinov, Phys. Met. Metallogr. 121, 1127 (2020). https://doi.org/10.1134/S0031918X20120042

    Article  CAS  Google Scholar 

  17. V. I. Zverev, A. M. Tishin, Min Zou, Ya. Mudryk, K. A. Gschneidner, Jr., and J. V. K. Pecharsky, J. Phys.: Condens. Matter 27, 146002 (2015). https://doi.org/10.1088/0953-8984/27/14/146002

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The synthesis and magnetometric measurements of the samples were performed at the Shared Use Center of the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Funding

This paper was supported by the Russian Foundation for Basic Research, project no. 19-32-90007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. I. Devyaterikov or E. A. Kravtsov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devyaterikov, D.I., Kravtsov, E.A., Proglyado, V.V. et al. Investigation of Helimagnetism in Dy and Ho Thin Films by Neutron Reflectometry. J. Surf. Investig. 15, 542–548 (2021). https://doi.org/10.1134/S102745102103023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102103023X

Keywords:

Navigation