Skip to main content
Log in

Ion-Stimulated Pitting during the Successive Irradiation of Molybdenum Mirrors with Helium and Argon Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of the formation of numerous pits on the surface of polished polycrystalline and single-crystal Mo mirrors after their successive irradiation with He and Ar ions in a gas discharge is found. The pits have the shape of round holes and long multidirectional linear grooves, the maximum depth of which is equal to the thickness of the layer damaged during polishing. The shape of the linear grooves corresponds to scratches immured at different stages of polishing, while their width and depth are determined presumably by the typical size of the used abrasive grains (~1 µm). The overwhelming majority of pits are formed at the interface between the damaged layer and the slightly deformed substrate material, where the gas-diffusion rate sharply decreases. The pitting effect leads to sharp degradation of the optical characteristics of the mirrors. The results obtained can be used to improve the polishing technology and to develop mirror cleaning systems for optical diagnostics of the plasma of thermonuclear facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. Kotov, Nucl. Fusion 56, 106027 (2016). https://doi.org/10.1088/0029-5515/56/10/106027

    Article  CAS  Google Scholar 

  2. A. V. Rogov and Yu. V. Kapustin, Usp. Prikl. Fiz. 4, 240 (2016). https://doi.org/10.1063/1.4962055

    Article  CAS  Google Scholar 

  3. F. Leipold, R. Reichle, C. Vorpahl, E. E. Mukhin, A. M. Dmitriev, A. G. Razdobarin, D. S. Samsonov, L. Marot, L. Moser, R. Steiner, E. Meyer, Rev. Sci. Instrum. 87, 11D439 (2016).

  4. A. M. Dmitriev, N. A. Babinov, A. N. Bazhenov, I. M. Bukreev, M. M. Kochergin, A. N. Koval, G. S. Kurskiev, A. E. Litvinov, S. V. Masyukevich, E. E. Mukhin, A. G. Razdobarin, D. S. Samsonov, V. V. Solokha, S. Y. Tolstyakov, P. Andrew, F. Leipold, P. A. Shigin, R. Reichle, V. L. Bukhovets, A. E. Gorodetsky, A. V. Markin, A. P. Zakharov, R. K. Zalavutdinov, An. P. Chernakov, Al. P. Chernakov, P. V. Chernakov, T. V. Chernoizumskaya, A. A. Kobelev, A. S. Smirnov, I. A. Marzinovsky, Phys. Scr. T 170, 014072 (2017). https://doi.org/10.1088/1402-4896/aa95e5

    Article  Google Scholar 

  5. W. Eckstein, J. A. Stephens, R. E. H. Clark, J. W. Davis, A. A. Haasz, E. Vietzke, Y. Hirooka, in Atomic and Plasma-Material Interaction Data for Fusion. Part B: Physical Sputtering and Radiation-Enhanced Sublimation (IAEA, Vienna, 2001), Vol. 7, p. 30.

    Google Scholar 

  6. K. Soni, L. Moser, R. Steiner, D. Mathys, F. Le Guern, J. Piqueras, L. Marot, and E. Meyer, Nucl. Mater. Energy 21, 100702 (2019). https://doi.org/10.1016/j.nme.2019.100702

    Article  Google Scholar 

  7. I. Orlovskiy, A. Alekseev, E. N. Andreenko, G. Asadulin, A. V. Gorshkov, Fusion Eng. Des. 123, 1011 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.057

    Article  CAS  Google Scholar 

  8. A. P. Kuznetsov, A. S. Alexandrova, O. I. Buzhinsky, K. L. Gubskiy, T. V. Kazieva, A. V. Savchenkov, S. N. Tugarinov, Phys. At. Nucl. 78, 1155 (2015). https://doi.org/10.1134/S1063778815100063

    Article  CAS  Google Scholar 

  9. V. S. Lisitsa, L. A. Bureyeva, A. B. Kukushkin, M. B. Kadomtsev, V. A. Krupin, M. G. Levashova, A. A. Medvedev, E. E. Mukhin, V. A. Shurygin, S. N. Tugarinov, K. Yu. Vukolov, J. Phys.: Conf. Ser. 397, 012015 (2012). https://doi.org/10.1088/1742-6596/397/1/012015

    Article  CAS  Google Scholar 

  10. A. V. Rogov and Yu. V. Kapustin, Instrum. Exp. Tech. 61, 317 (2018). https://doi.org/10.1134/S0020441218020069

    Article  CAS  Google Scholar 

  11. A. E. Gorodetsky, R. Kh. Zalavutdinov, V. L. Bukhovets, A. V. Markin, A. P. Zakharov, T. V. Rybkina, V. I. Zolotorevsky, E. E. Mukhin, A. G. Razdobarin, and A. M. Dmitriev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 1214 (2016). https://doi.org/10.1134/S1027451016050736

    Article  CAS  Google Scholar 

  12. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2018).

    Book  Google Scholar 

  13. A. V. Rogov and K. Yu. Vukolov, Tech. Phys. 51, 499 (2006).

    Article  CAS  Google Scholar 

  14. A. J. Auberton-Herve and M. Bruel, Int. J. High Speed Electron. Syst. 10, 131 (2000). https://doi.org/10.1142/S0129156400000179

    Article  CAS  Google Scholar 

  15. A. V. Rogov, K. Yu. Vukolov, A. V. Gorshkov, and V. M. Gureev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 2, 39 (2005).

  16. I. I. Novikov and K. M. Rozin, Crystallography and Crystal Lattice Defects: Textbook for Universities (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  17. A. E. Gorodetsky, A. V. Markin, V. L. Bukhovets, V. L. Voititsky, T. V. Rybkina, R. Kh. Zalavutdinov, V. I. Zolotarevsky, A. P. Zakharov, I. A. Arkhipushkin, L. P. Kazansky, A. M. Dmitriev, A. G. Razdobarin, D. S. Samsonov, and E. E. Mukhin, J. Surf. Invest.: X‑Ray, Synchrotron Neutron Tech. 14, 1003 (2020). https://doi.org/10.1134/S1027451020050298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rogov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogov, A.V., Kapustin, Y.V., Gureev, V.M. et al. Ion-Stimulated Pitting during the Successive Irradiation of Molybdenum Mirrors with Helium and Argon Ions. J. Surf. Investig. 15, 563–569 (2021). https://doi.org/10.1134/S1027451021030307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021030307

Keywords:

Navigation