Skip to main content
Log in

Recurrent solutions of the Korteweg–de Vries equation with boundary force

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we will establish the existence of the bounded solution, periodic solution, quasi-periodic solution and almost periodic solution for the Korteweg–de Vries equation with boundary force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bona J L, Sun S M and Zhang B Y. Forced oscillations of a damped Korteweg–de Vries equation in a quarter plane. Commun. Contemp. Math., 2003, 5: 369–400.

    Article  MathSciNet  Google Scholar 

  2. Bona J L, Sun S M and Zhang B Y. A Nonhomogeneous Boundary-Value Problem for the Korteweg–de Vries Equation Posed on a Finite Domain, Communications in Partial Differential Equations, 2003, 28: 1391–1436.

    Article  MathSciNet  Google Scholar 

  3. Bona J L, Sun S M and Zhang B Y. The initial-boundary value problem for the KdV-equation on a quarter plane, Trans. American Math. Soc., 2001. 354: 427–490.

    Article  Google Scholar 

  4. Cerpa E, Crépeau E. Rapid exponential stabilization for a linear Korteweg–de Vries equation. Discrete Contin. Dyn. Syst. Ser. B, 2009, 11(3): 655–668.

    MathSciNet  MATH  Google Scholar 

  5. Chu J, Coron J M, Shang P. Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths. Journal of Differential Equations, 2015, 259(8): 4045–4085.

    Article  MathSciNet  Google Scholar 

  6. Chepyzhov V V, Vishik M I. Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems A tribute to J L Lions. ESAIM: Control, Optimisation and Calculus of Variations, 2002, 8: 467–487.

    MathSciNet  MATH  Google Scholar 

  7. Chepyzhov V V, Vishik M I, Wendland W L. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete Contin. Dyn. Syst, 2005, 12(1): 27–38.

    Article  MathSciNet  Google Scholar 

  8. Chepyzhov V, Vishik M. Attractors for nonautonomous Navier–Stokes system and other partial differential equations. Instability in Models Connected with Fluid Flows I, 2008: 135–265.

    Article  MathSciNet  Google Scholar 

  9. Chen M. Robustness of exponential attractors for damped Korteweg–de Vries equations. Proceedings of the American Mathematical Society, 2018, 146(8): 3439–3447.

    Article  MathSciNet  Google Scholar 

  10. Chen M. Forced oscillations of a damped Korteweg–de Vries equation on a periodic domain. Bull. Iranian Math. Soc., 2016, 42: 1027–1038.

    MathSciNet  MATH  Google Scholar 

  11. Chen M. Bang-bang property for time optimal control of the Korteweg–de Vries–Burgers equation, Appl. Math. Optim., 2017, 76: 399–414.

    Article  MathSciNet  Google Scholar 

  12. Chen M. Lipschitz stability in an inverse problem for the Korteweg–de Vries equation on a finite domain, Bound. Value Probl., 2017, 48: 11 pp.

  13. Chen M. Null controllability with constraints on the state for the linear Korteweg–de Vries equation. Archiv der Mathematik, 2015, 104(2): 189–199.

    Article  MathSciNet  Google Scholar 

  14. Chen M. Null controllability with constraints on the state for the Korteweg–de Vries equation. Acta Applicandae Mathematicae, 2016, 146(1): 17–28.

    Article  MathSciNet  Google Scholar 

  15. Coron J M and Crépeau E. Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc., 2004, 6: 367–398.

    Article  MathSciNet  Google Scholar 

  16. Capistrano-Filho R, Pazoto A F and Rosier L. Internal controllability of the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2015, 21: 1076–1107.

    Article  MathSciNet  Google Scholar 

  17. Gao P. Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg–Landau equations. Mathematical Methods in the Applied Sciences, 2018, 41(7): 2769–2794.

    Article  MathSciNet  Google Scholar 

  18. Gao P. Recurrent solutions of the derivative Ginzburg–Landau equation with boundary forces. Applicable Analysis, 2018, 97(16): 2743–2761.

    Article  MathSciNet  Google Scholar 

  19. Ghidaglia J M. Weakly damped forced Korteweg–de Vries equations behave as a finite dimensional dynamical system in the long time. J. Differential Equations, 1988, 74: 369–390.

    Article  MathSciNet  Google Scholar 

  20. Goubet O, Rosa R. Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line. J. Differential Equations, 2002, 185: 25–53.

    Article  MathSciNet  Google Scholar 

  21. Kenig C E, Ponce G and Vega L. Well-posedness of the initial value problem for the Korteweg–de Vries equation, J. American Math. Soc., 1991, 4: 323–347.

    Article  MathSciNet  Google Scholar 

  22. Khan R A, Usman M. Eventual periodicity of forced oscillations of the Korteweg–de Vries type equation. Applied Mathematical Modelling, 2012, 36(2): 736–742.

    Article  MathSciNet  Google Scholar 

  23. Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications, vol. I, Grundlehren Math. Wiss., Band 181, Springer, New York-Heidelberg, translated from the French by P. Kenneth 1972.

  24. Rosier L, Zhang B Y. Global Stabilization of the Generalized Korteweg–de Vries Equation Posed on a Finite Domain. SIAM Journal on Control and Optimization, 2006, 45(3): 927–956.

    Article  MathSciNet  Google Scholar 

  25. Rosier L. Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 1997, 2: 33–55.

    Article  MathSciNet  Google Scholar 

  26. Saut J C and Scheurer B. Unique continuation for some evolution equations. J. Differential Equations, 1987, 66: 118–139.

    Article  MathSciNet  Google Scholar 

  27. Tang S, Chu J, Shang P, et al. Asymptotic stability of a Korteweg–de Vries equation with a two-dimensional center manifold. Advances in Nonlinear Analysis, 2016.

  28. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol.44, Springer, New York, 1983.

  29. Pazoto A F. Unique continuation and decay for the Korteweg–de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 2005, 11: 473–486.

    Article  MathSciNet  Google Scholar 

  30. Usman M and Zhang B Y. Forced oscillations of the Korteweg–de Vries equation on a bounded domain and their stability. Discrete Contin. Dyn. Syst. Ser. A, 2010, 26: 1509–1523.

    Article  MathSciNet  Google Scholar 

  31. Wang M. Global attractor for weakly damped gKdV equations in higher Sobolev spaces. Discrete Contin. Dyn. Syst. Ser. A, 2015, 35: 3799–3825.

    Article  MathSciNet  Google Scholar 

  32. Zhang B Y. Boundary stabilization of the Korteweg–de Vries equation//Control and estimation of distributed parameter systems: nonlinear phenomena. Birkhäuser Basel, 1994: 371–389.

  33. Zhang B Y. Unique continuation for the Korteweg–de Vries equation. SIAM J. Math. Anal., 1992, 23: 55–71.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Chen.

Additional information

Communicated by G.D. Veerappa Gowda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M. Recurrent solutions of the Korteweg–de Vries equation with boundary force. Indian J Pure Appl Math 53, 112–126 (2022). https://doi.org/10.1007/s13226-021-00033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00033-8

Keywords

Mathematics Subject Classification

Navigation