Skip to main content
Log in

The Sutherland–Einstein Hypothesis on the Origin of Magnetic Fields of Astropysical Objects

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We discuss the theoretical and experimental foundations of the hypothesis on the origin of the magnetic fields of the Earth and other astrophysical objects, put forward in the early twentieth century by Sutherland and later by Einstein. According to this hypothesis, the electric charges of an electron and a proton are slightly different in absolute values, which, due to the rotation of the Earth (or another astronomical object), leads to emergence of a magnetic field. Terrestrial experiments aimed at determining the difference in the electric charges of an electron and a proton are discussed. The Sutherland–Einstein hypothesis is theoretically justified within the framework of two versions of the geometric approach: (1) in a simplified version of the 6-dimensional Kaluza–Klein theory, and (2) in the framework of the 5-dimensional Kaluza theory with scalarism, as well as in the framework of the relational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schuster, J. Geophys. Res. 1, 1 (1896).

    Article  ADS  Google Scholar 

  2. P. N. Lebedev, “The magnetometrical investigation of rotating bodies”, in Selected Works, Ed. by A. K. Timiryazev (Gostechizdat, Moscow, 1949, in Russian).

    Google Scholar 

  3. H. A. Wilson, Proc. Roy. Soc. 104, 451 (1923).

    ADS  Google Scholar 

  4. P. M. S. Blackett, Nature 159, 658 (1947).

    Article  ADS  Google Scholar 

  5. E. V. Stupochenko, Doklady Akademii Nauk SSSR 62(4), 477 (1948) [in Russian].

    Google Scholar 

  6. B. M. Yanovskij, Earth’s magnetism (Leningrad University Press, Leningrad, 1978, in Russian).

    Google Scholar 

  7. J. Larmor, Rep. Brit. Ass. Advmt. Sci. 4, 159 (1919).

    Google Scholar 

  8. W. M. Elsasser, Phys. Rev. 55, 489 (1939).

    Article  ADS  Google Scholar 

  9. Ya. I. Frenkel, Izv. AN USSR Ser. Fiz. 11, 6 (1947) [in Russian].

    Google Scholar 

  10. T. Rikitake, Electromagnetism and the Earth’s Interior (Elsevier, Amsterdam, 1966).

    Google Scholar 

  11. E. N. Parker, Conversations on Electric and Magnetic Fields in the Cosmos (Princeton Univ. Press, Princeton, 2007).

    Book  Google Scholar 

  12. Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, The Almighty Chance (World Scientific, Singapore, 1990).

    Book  Google Scholar 

  13. S. A. Arseniev, “Theoretical modeling of the main magnetic field of the Earth and the planets”, Aktualnye problemy gumanitarnykh i estestvennykh nauk, 4(2), 313 (2015) [in Russian].

  14. V. V. Kuznetsov, Introduction to Hot Earth Physics (Petropavlovsk-Kamchatsky, KamSU, 2008, in Russian).

    Google Scholar 

  15. V. I. Grigoriev, E. V. Grigoriev, and V. S. Rostovskij, Baroelectric effect and electromagnetic fields of planets and stars (PHYSMATLIT, Moscow, 2003, in Russian).

    Google Scholar 

  16. W. Sutherland, Nature 63, 205 (1900).

    Article  ADS  Google Scholar 

  17. W. Sutherland, Terr. Mag. Atmos. Electr. 8, 49 (1903).

    Article  Google Scholar 

  18. W. Sutherland, Terr. Mag. Atmos. Electr. 9, 167 (1904).

    Article  Google Scholar 

  19. W. Sutherland, Terr. Mag. Atmos. Electr. 13, 155 (1908).

    Article  Google Scholar 

  20. W. Sutherland, Terr. Mag. Planet Sci. 5, 73 (1900).

    Article  Google Scholar 

  21. D. Brunt, Astron. Nachrichten, 196, 169 (1913).

    Article  ADS  Google Scholar 

  22. V. W. Hughes, “The Lyttleton-Bondi universe and charge equality”, in Gravitation and Relativity, Ed. H.-Y. Chiu and W. F. Hoffmann (W. A. Benijamin Inc., New York–Amsterdam, 1964)

    Google Scholar 

  23. A. Piccard and E. Kessler, Arch. Sci. Phys. Nat. 7, 340 (1925).

    Google Scholar 

  24. G. Bressi, G. Carugno, F. Della Valle, G. Galeazzi, G. Ruoso, and G. Sartori, Phys. Rev. A 83, 052101 (2011); arXiv: 1102.2766.

    Article  ADS  Google Scholar 

  25. J. Schwinger, Einstein’s Legacy: The Unity of Space and Time (New York, Scientific American Library, 1986).

    Google Scholar 

  26. Yu. S. Vladimirov, Moscow University Physics Bulletin 2, 6 (2000)

    Google Scholar 

  27. Yu. S. Vladimirov, Geometro-physics (BINOM Publishing, Moscow, 2008, in Russian).

    Google Scholar 

  28. Yu. S. Vladimirov, Metaphysics and Fundamental Physics. Part 2 (LENAND Publ., Moscow, 2017, in Russian).

    Google Scholar 

  29. Yu. S. Vladimirov, Relational picture of the world. Book 1. Relational concept of geometry and classical physics (LENAND Publ., Moscow, 2020, in Russian).

  30. H. Weyl, Space, Time, Matter (Dover Publ., Mineola, 1952).

  31. E. Schmutzer, Relativistische Physik (Ernst. Publication, Leipzig, Teubner, 1968).

  32. Yu. S. Vladimirov and S. V. Bolokhov, Space, Time and Fundamental Interactions 2(19), 27 (2016) [in Russian].

  33. I. A. Babenko, Metafizika 4 (38), 166 (2020) [in Russian].

  34. Yu. S. Vladimirov, S. V. Bolokhov, and I. A. Babenko, Grav. Cosmol. 24, 139 (2018).

  35. R. A. Millikan, The Electron (Chicago and London, Tne University of Chicago Press, 1917).

  36. J. C. Zorn, G. E. Chamberlain, and V. W. Hughes, Phys. Rev. 129, 25 (1963).

  37. J. G. King, Phys. Rev. Lett. 5, 562 (1960).

  38. V. W. Hughes, Phys. Rev. 105, 170 (1957).

  39. A. Einstein, “Prinzipielles zur allgemeinen Relativitätstheorie”, Ann. Phys. 55, 241 (1918)

  40. A. S. Eddington, Fundamental theory (New York, Cambridge Press, 1946).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Babenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, I.A., Vladimirov, Y.S. The Sutherland–Einstein Hypothesis on the Origin of Magnetic Fields of Astropysical Objects. Gravit. Cosmol. 27, 105–112 (2021). https://doi.org/10.1134/S0202289321020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289321020043

Navigation