Skip to main content
Log in

Visualization of impact cratering in granular media using quarter space penetration tests

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Impact cratering has a number of important scientific, military, and civilian applications. In this study, the techniques of quarter space penetration, transparent soil modeling, and high-speed photography are combined to visualize impact cratering of spherical projectiles as they penetrate into different granular media. The shape and size of the cross section of the impact crater were visualized and quantified using these techniques for two granular materials, in both dry and saturated conditions. The crater rate of expansion and the velocity decay were also mapped and used to estimate deceleration rates of the crater expansion. A tool is presented for assessing the shape and size of the crater for the case when the penetrator diverges from the observation window. Shallower craters were observed in angular fused quartz targets in comparison to the rounded sand targets. Similarly, higher viscosity saturating fluids lead to narrower cavities. Besides the open cavity, permanent dilation regions ahead of the projectile were also mapped. The evolution of the crater versus time was used to estimate the deceleration of the rate of expansion of the crater. New Poncelet parameters are also developed for specific testing conditions not available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Colwell, J.E., et al., Ejecta from impacts at 0.2–2.3 m/s in low gravity. Icarus, 2008. 195(2): p. 908–917

  2. Marston, J.O., Li, E.Q., Thoroddsen, S.T.: Evolution of fluid-like granular ejecta generated by sphere impact. J. Fluid Mech. 704, 5–36 (2012)

    Article  Google Scholar 

  3. Pacheco-Vázquez, F., Tacumá, A., Marston, J.O.: Craters produced by explosions in a granular medium. Phys. Rev. E 96(3), 032904 (2017)

    Article  Google Scholar 

  4. Mikkelsen, R., et al.: Granular Eruptions: Void Collapse and Jet Formation. Phys. Fluids 14(9), S14–S14 (2002)

    Article  Google Scholar 

  5. Uehara, J.S., et al.: Low-Speed Impact Craters in Loose Granular Media. Phys. Rev. Lett. 90(19), 194301 (2003)

    Article  Google Scholar 

  6. Hill, G., Yeung, S., Koehler, S.A.: Scaling vertical drag forces in granular media. EPL 72, 137–143 (2005)

    Article  Google Scholar 

  7. Collins, G.S., et al., Numerical Modelling of Impact Processes. Impact Cratering, 2012: p. 254–270

  8. Børvik, T., Dey, S., Olovsson, L.: Penetration of granular materials by small-arms bullets. Int. J. Impact Eng 75, 123–139 (2015)

    Article  Google Scholar 

  9. Piekutowski, A.J. Formation of bowl-shaped craters. in Eleventh Lunar Planetary Science Conference. 1980. Houston, Texas

  10. Borg, J.P., et al.: In situ velocity and stress characterization of a projectile penetrating a sand target: Experimental measurements and continuum simulations. Int. J. Impact Eng 51, 23–35 (2013)

    Article  Google Scholar 

  11. Borg, J.P., Vogler, J.T.: An Experimental Investigation of a High Velocity Projectile Penetrating Sand. In: XIth International Congress and Exposition. Florida: Society of Experimental Mechanics, Inc, Orlando (2008)

    Google Scholar 

  12. Ormö, J., et al.: Scaling and reproducibility of craters produced at the Experimental Projectile Impact Chamber (EPIC), Centro de Astrobiología, Spain. Meteorit. Planet. Sci. 50(12), 2067–2086 (2015)

    Article  Google Scholar 

  13. Barnouin-Jha, O.S., et al.: Non-intrusive measurements of crater growth. Icarus 188(2), 506–521 (2007)

    Article  Google Scholar 

  14. Iskander, M., Bless, S., Omidvar, M.: Rapid penetration into granular media: visualizing the fundamental physics of rapid earth penetration. Elsevier, ISBN: 9780128008683 (2015)

  15. Iskander, M.: Modelling with Transparent Soils, Visualizing Soil Structure Interaction and Multi Phase Flow, Non-Intrusively, p. 329. Springer, Geomechanics & Geoengineering (2010)

    Google Scholar 

  16. Guzman, I.L., et al.: A transparent aqueous-saturated sand surrogate for use in physical modeling. Acta Geotech. 9(2), 187–206 (2013)

    Article  Google Scholar 

  17. Guzman, I.L., Iskander, M.: Geotechnical properties of sucrose-saturated fused quartz for use in physical modeling. Geotech. Test. J. 36(3), 448–454 (2013)

    Article  Google Scholar 

  18. Liu, J.Y., Iskander, M.G., Sadek, S.: Consolidation and permeability of transparent amorphous silica. Geotech. Test. J. 26(4), 390–401 (2003)

    Google Scholar 

  19. Zhao, H., Ge, L.: Investigation on the shear moduli and damping ratios of silica gel. Granular Matter 16(4), 449–456 (2014)

    Article  Google Scholar 

  20. Fernández-Serrano, R., Iskander, M., Tabe, K.: 3D contaminant flow imaging in transparent granular porous media. Géotechnique Letters 1(3), 71–78 (2011)

    Article  Google Scholar 

  21. Lo, H., et al.: A Transparent Water-Based Polymer for Simulating Multiphase Flow. Geotech. Test. J. 33(1), 1–13 (2010)

    Google Scholar 

  22. Wallace, J., Rutherford, C.: Geotech. Test. J. 38(5), 574–587 (2015)

    Article  Google Scholar 

  23. Iskander, M., Bathurst, R., Omidvar, M.: Past, Present, and Future of Transparent Soils. Geotech. Test. J. 38(5), 557–573 (2015)

    Article  Google Scholar 

  24. Kong, G., et al.: Investigation on shear modulus and damping ratio of transparent soils with different pore fluids. Granular Matter 20(1), 8 (2018)

    Article  Google Scholar 

  25. Ezzein, F.M., Bathurst, R.J.: A transparent sand for geotechnical laboratory modeling. ASTM Geotechnical Testing Journal 34(6), 1–12 (2011)

    Google Scholar 

  26. Chen, Z., et al.: Modelling of projectile penetration using transparent soils. International Journal of Physical Modelling in Geotechnics 14(3), 68–79 (2014)

    Article  Google Scholar 

  27. Gill, D., Lehane, B.: An Optical Technique for Investigating Soil Displacement Patterns. Geotech. Test. J. 24(3), 324–329 (2001)

    Article  Google Scholar 

  28. Iskander, M., Liu, J.: Spatial Deformation Measurement Using Transparent Soil. Geotech. Test. J. 33(4), 314–321 (2010)

    Google Scholar 

  29. Lehane, B.M., Gill, D.R.: Displacement fields induced by penetrometer installation in an artificial soil. International Journal of Physical Modelling in Geotechnics 4(1), 25–36 (2004)

    Article  Google Scholar 

  30. Liu, J., Iskander, M.G.: Modelling capacity of transparent soil. Can. Geotech. J. 47(4), 451–460 (2010)

    Article  Google Scholar 

  31. NI, Q., HIRD, C.C., GUYMER, I.: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Géotechnique 60(2), 121–132 (2010)

    Article  Google Scholar 

  32. Omidvar, M., et al.: Visualizing Kinematics of Dynamic Penetration in Granular Media Using Transparent Soils. Geotech. Test. J. 38(5), 656–672 (2015)

    Article  Google Scholar 

  33. Ads, A., Iskander, M., Bless, S.: Soil–projectile interaction during penetration of a transparent clay simulant. Acta Geotech. 15(4), 815–826 (2020)

    Article  Google Scholar 

  34. Ads, A., et al.: Visualizing the effect of Fin length on torpedo anchor penetration and pullout using a transparent soil. Ocean Eng. 216, 108021 (2020)

    Article  Google Scholar 

  35. Das, B.M.: Principles of Geotechnical Engineering, 10th edn. Cengage Learning (2020)

  36. Cave, A., et al.: Design and performance of a laboratory pneumatic gun for soil ballistic applications. Exp. Tech. 40, 541–553 (2016). https://doi.org/10.1007/s40799-016-0055-3

    Article  Google Scholar 

  37. Guzman, I., Iskander, M. Quarter Space Penetration into Granular Media. 2021; Available from: https://youtu.be/Kh1NZ8g3mjU

  38. Guzman, I., Iskander, M., Bless, S.: A Comparison of Half and Quarter Space Penetration into Granular Media. Geotechnical Testing Journal 43(4):809–828 (2020). https://doi.org/10.1520/GTJ20190080

    Article  Google Scholar 

  39. Nelson, E.L., et al.: Projectile Interactions in Granular Impact Cratering. Phys. Rev. Lett. 101(6), 068001 (2008)

    Article  Google Scholar 

  40. Díaz-Melián, V.L., et al.: Rolling away from the Wall into Granular Matter. Phys. Rev. Lett. 125(7), 078002 (2020)

    Article  Google Scholar 

  41. Allen, W.A., Mayfield, E.B., Morrison, H.L.: Dynamics of a Projectile Penetrating Sand. J. Appl. Phys. 28(3), 370–376 (1957)

    Article  Google Scholar 

  42. Allen, W.A., Mayfield, E.B., Morrison, H.L.: Dynamics of a projectile penetrating sand: part II. J. Appl. Phys. 28(11), 1331–1335 (1957)

    Article  Google Scholar 

  43. Suescun-Florez, E., et al.: Particle Size Reduction in Granular Materials During Rapid Penetration. In: Dynamic Behavior of Materials, vol. 1. Springer (2016). https://doi.org/10.1007/978-3-319-22452-7_31

  44. Clemmow, C.A., Hadcock, S.G.: IX. A theory of internal ballistics based on a pressure-index law burning for propellants. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1928. 227(647–658): p. 345–382

  45. Mcmanus, K.J., Davis, R.O.: Dilation-induced pore fluid cavitation in sands. Géotechnique 47(1), 173–177 (1997)

    Article  Google Scholar 

  46. Guzman, I.L., et al.: Terminal depth of penetration of spherical projectiles in transparent granular media. Granular Matter 16(6), 829–842 (2014)

    Article  Google Scholar 

  47. Cooke, S.A., Jónsdóttir, S., Westh, P.: The vapour pressure of water as a function of solute concentration above aqueous solutions of fructose, sucrose, raffinose, erythritol, xylitol, and sorbitol. J. Chem. Thermodyn. 34(10), 1545–1555 (2002)

    Article  Google Scholar 

  48. Poncelet, J.V., Introduction Ii la Mecanique Industrielle. Second Edition ed. 1839, Brussels

  49. Bless, S., Peden, B., Guzman, I., Omidvar, M., Iskander, M.: Poncelet coefficients of granular media. In: Song, B., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials, vol. 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00771-7_45

  50. Bless, S.J., Omidvar, M., Iskander, M.: Poncelet coefficients for dry sand. AIP Conf. Proc. 1979(1) (2018). https://doi.org/10.1063/1.5044920

    Article  Google Scholar 

  51. Kenneally, B., Omidvar, M., Bless, S., Iskander, M.: Observations of velocity-dependent drag and bearing stress in sand penetration. In: Dynamic behavior of materials, Volume 1: Proceedings of the 2020 Annual Conference on Experimental and Applied Mechanics, pp. 29–35. Springer (2021)

  52. Peden, R., et al.: Photonic doppler velocimetry for study of rapid penetration into sand. Geotech. Test. J. 37(1), 139–150 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Strategic and Environmental Research and Development Program (SERDP) Project No: MR19-1277 and the Defense Threat Reduction Agency Grant No: HDTRA1-10-1-0049. Fused quartz powder used in this investigation was manufactured by Mineral Technology Corporation (Mintec). Low Color Sucrose™ used to match the granular fused quartz was manufactured by Indiana Sugars. The HX-5 high-speed camera was manufactured by NAC Image Technology Inc.

Funding

The authors thank the Strategic and Environmental Research and Development Program (SERDP) Project No: MR19-1277 and the Defense Threat Reduction Agency Grant No: HDTRA1-10-1-0049 for their support.

Author information

Authors and Affiliations

Authors

Contributions

This work was part of the first author’s dissertation at NYU conducted under the supervision of the second author. The second and third authors were Principal Investigators of the project.

Corresponding author

Correspondence to Magued Iskander.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman, I.L., Iskander, M. & Bless, S. Visualization of impact cratering in granular media using quarter space penetration tests . Granular Matter 23, 63 (2021). https://doi.org/10.1007/s10035-021-01131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01131-4

Keywords

Navigation